

Takara Resources Inc.

Mineral Resource Estimation Tassawini - Sonne Gold Project Guyana

Report Readdressed to

Takara Resources Inc

80 Richmond Street West Suite 508 Toronto, Ontario Canada M5H 2A4

Report Prepared by

SRK CONSULTING (CANADA) INC. Suite 2100, 25 Adelaide Street East Toronto, ON M5C 3A1 Tel: (416) 601-1445 Fax: (416) 601-9046 Web Address: www.srk.com E-mail: toronto@srk.com

<image>

Tassawini - Sonne Gold Deposits

Georgete

Takara Resources Inc.

80 Richmond Streeet West, Suite 508 Toronto, Ontario Canada M5H 2A4 E-mail: <u>info@takararesources.com</u> Web Address: <u>www.takararesources.com</u>

SRK Project Number 3CT015.000

SRK CONSULTING (CANADA) INC. Suite 2100, 25 Adelaide Street East Toronto, ON M5C 3A1 Tel: (416) 601-1445 • Fax: (416) 601-9046 E-mail: <u>toronto@srk.com</u> Web Address: <u>www.srk.com</u>

Effective Date: Readdressed Date: Compiled by:

July 21, 2008 February 10, 2010

Ulevesticuse

Lars Weiershäuser, Ph.D., P.Geo Senior Geologist

Lucy Roberts, Ph.D. Senior Resource Geologist

G. M.

G. David Keller, P.Geo Principal Resource Geologist

Reviewed by:

Jean-François Couture, Ph.D., P.Geo Principal Geologist

Cover: Examining a Trench at Sonne (Top) Folded Quartz Veins at Tassawini (Bottom left)

Foreword

Takara Resources Inc. ("Takara") has entered into an arms-length agreement with Victoria Gold Corp. ("Victoria") and it's wholly owned subsidiary companies, to acquire all of the issued and outstanding securities of StrataGold Guyana Inc. ("SGI") (the "Acquisition"). SGI holds title to 100 percent of the Tassawini - Sonne Gold Project (the "Tassawini Gold Project"); and a 31.96 percent interest (as of July 1, 2009) in the BRL venture (the "BRL Venture") (collectively, referred to as the "Guyana Gold Projects"). In consideration for the Acquisition, Takara will issue to Victoria or its subsidiary, shares equal to 56 percent of the issued and outstanding common shares of Takara on the date of closing.

In a Takara News Release dated November 13, 2009, that announced the Acquisition, was disclosure of a Mineral Resource Statement for the Tassawini-Sonne Gold Project prepared by SRK Consulting (Canada) Inc. ("SRK") for StrataGold Corporation ("StrataGold") and SGI. StrataGold and SGI are direct or indirectly held wholly owned subsidiaries of Victoria. The following technical report is being readdressed to Takara to support the disclosure the Mineral Resource Statement for the Tassawini-Sonne Gold Project. The effective date for the original technical report was July 21, 2008. The technical report is being readdressed to Takara on February 10, 2010.

The Mineral Resource Statement documented in the April 30, 2008 technical report considered drilling and trenching information up to November 2007. SRK understands that no additional drilling or exploration has been carried out on the property after this date. As a consequence, SRK considers that the Mineral Resource Statement for the Tassawini-Sonne Gold Project documented in the July 21, 2008 technical report remains current.

SRK is therefore of the opinion that it is appropriate to readdress the original July 21, 2008 technical report for the Tassawini-Sonne Gold Project to Takara. The following readdressed technical report is identical to the original technical report.

There are no material changes to the tenure and bounds of the Tassawini and Anaturi Prospecting Licenses ("PL") (PL 01/2005 and 34/2005 respectively) or the four Medium Scale Mining Permits ("MSMP") (MSMP Numbers 47/98, 23/01, 24/01, 25/01). All mineral resources reported for the Tassawini-Sonne Gold Project are located within the four MSMP.

The four MSMP were issued pursuant to Section 63 of the Mining Act 1989 and Mining Regulations. The most recent annual rental payment of US\$3,413 and reporting requirements for the four MSMP were made to the Guyana Geology and Mines Commission on or before the anniversary dates. MSMP 47/98 was granted to September 25, 2013, MSMP 23/01, 24/01 and 25/01 were granted to September 15, 2011 at an annual rental cost of US\$1 per acre.

The Tassawini PL is in good standing at an annual rental cost of US\$35,685 with the most recent annual rental payment made on February 10, 2010. The Anaturi PL in good standing at an annual rental cost of US\$35,850 with the most recent annual rental payment made on November 30, 2009.

SGI had covenanted to the vendor that it shall make all reasonable efforts, consistent with technically and economically prudent industry practice to complete a "Feasibility Study" by June 8, 2009. An amendment to the Tassawini Option Agreement was signed in March 2009 and by paying the vendor US\$6,000 per month, for the period

from April 1, 2009 to June 8, 2012, the vendor has granted an extension for the delivery date of the Feasibility Study to June 8, 2012. All the payments have been made to date with the most recent payment made on March 1, 2010. Outstanding payments to the vendor include US\$6,000 per month due on the first of each month to June 1, 2012.

The Kaituma and Kaituma East Prospecting Licenses have, however, been sold to Argus Metals Corp. by Victoria and the BRL Venture, a joint venture between SGI and Newmont Overseas Exploration Limited a subsidiary of Newmont Mining Corporation, has reduced the land position in size, particularly the large Barama Reconnaissance Permit which no longer exists. The joint venture still holds a large strategic land position in Northwest Guyana within the Arakaka Gold District.

The current mineral tenure map is shown in Figure i.

SRK Consulting (Canada) Inc. Readdressed to Takara Resources Inc. on February 10, 2010

Figure i: Land Tenure Map, February 10, 2010.

Executive Summary

Introduction

The Tassawini and Sonne projects are gold deposits located within the Tassawini Prospecting Licence ("PL") in Guyana, approximately 170 kilometres northwest of Georgetown, the country's capital. The properties were optioned by StrataGold Guyana Inc. ("StrataGold") in 2004 from Mister Wayne Vieira.

SRK Consulting (Canada) Inc. ("SRK") was retained by StrataGold to prepare mineral resource estimates for the two deposits. This technical report documents the resource model constructed by SRK for the Tassawini and Sonne projects. It was prepared following the guidelines of the Canadian Securities Administrators National Instrument 43-101 and Form 43-101F1, and in conformity with generally accepted CIM "Estimation of Mineral Resources and Mineral Reserves Best Practice Guidelines". SRK visited the projects in November 2007.

Property Description and Agreements

StrataGold's interests in Guyana cover an area of more than 400,000 hectares under various types of licenses and agreements. The Tassawini and Sonne deposits are located within the Tassawini PL which encompasses an area of 4,814 hectares with smaller Medium Scale Mining Permits ("MSMP") located within the larger PL. The Tassawini MSMPs are optioned to StrataGold from Mr. Wayne Vieira; they cover 1,381 hectares and are subject to the Tassawini Option Agreement.

Location, Access and Physiography

The Tassawini and Sonne gold deposits are located approximately 170 kilometres northwest of the city of Georgetown. The project is accessible by air or boat. One thousand ton barges can navigate up-river to the property during the rainy season. The centre of the property is located at 59.5833 degrees longitude west and 7.5167 degrees latitude north.

The area is characterized by low relief within a coastal wetland environment. The average elevation varies between twenty and eighty metres above mean sea level. Heavily vegetated tropical rainforest dominates the landscape, although sporadic small swampy areas that support only grasses or stunted trees and bushes are also present. The climate is tropical with two short wet seasons from early May to mid-July, and from early December to mid-January.

History

Gold exploration around the Tassawini Project area has been ongoing actively since the beginning of the twentieth century. From 1907 to 1914, large steam-powered turbines and pressure pumps were used to hydraulically mine gold at the Tassawini Mine. The property remained dormant despite many surveys between the 1940's and early 1980's until Paranapanema S.A. Mineracao Industria E Construcao conducted detailed exploration work and in the late 1980's Kilborn was commissioned to estimate a resource. The estimated historical mineable reserve was 1,422,678 tonnes with an average grade of 1.97 g/t Au. Mr Wayne Vieira, a Guyanese citizen, purchased the MSMP's in 1995 for \$100,000 before he commenced mining alluvial deposits on Tassawini Creek. He also entered into a joint venture agreement with Menora Resources Inc. who conducted soil and drilling sampling programs. In 2001, Tassawini Gold Mines reported a "global" mineral resource estimate of 2.74 million tonnes with a grade of 2.2 to 2.7 grams per tonne gold. The results for these historical resource estimations do not meet National Instrument 43-101 guidelines and are for comparative purposes only and should not to be relied on.

Regional and Local Geology

Northern Guyana is underlain by the Archean-Proterozoic Guiana Shield, which is mainly composed of a granite-greenstone terrain. The main structural fabric trends east to northeast. The geology of the Tassawini and Anaturi properties is dominated by the Lower Proterozoic Barama-Mazaruni Supergroup, which consists of metasedimentary / greenstone terrain intercalated with Archean-Proterozoic gneisses that have been intruded by granites, mafic and ultramafic rocks.

The Trans-Amazonian Orogenic Cycle tectono-thermal episode of Paleoproterozoic age resulted in block faulting, crustal shortening, metamorphism and anatexis. Regional metamorphic grades typically range from lower to middle greenschist facies; near larger granitic complexes metamorphism reaches amphibolite facies.

The geology of the Tassawini and Sonne projects is dominated by a succession of lower to upper greenschist facies fine-grained metasedimentary rocks consisting primarily of phyllites and finely banded fine-grained metaclastites, carboniferous schists, and garnet-sulphide-graphite rocks. Saprolite alteration tends to be thick due to the tropical climate.

Deposit Types and Mineralization

Gold mineralization of the Tassawini and Sonne projects are typical of shear hosted deposits formed in regional-scale brittle-ductile structures. The general model for these types of deposits involves large amounts of hydrothermal fluids focussed in shear zones where the permeability is greater than within the country rock. The hydrothermal fluids carry gold in solution until changes in temperature, pressure, reduction potential or pH facilitate its precipitation. The gold source is likely the country rocks through which metamorphic fluids travel before concentrating in the shear zones.

Known mineralization on the StrataGold properties is made up of five separate mineralized zones: Tassawini East, Tassawini West (including Mine Creek), Tassawini South, and Black Ridge, and Sonne.

Exploration and Drilling

Since 2004, StrataGold have completed exploration activities on the Tassawini and Sonne projects including:

- Diamond and reverse circulation drilling (1,279 holes totalling 47,509 metres);
- Channel sampling (trench and wall sampling);
- Geochemical soil sampling (9,167 soil samples on a 200 metre by twenty-five metre grid infilled with 100 metre by twenty-five metre grids);
- Structural mapping;
- Surveying;

•

- Geophysics;
 - Petrographical studies;
- Metallurgical studies;
- Infrastructure development.

Sampling Method, Approach and Analyses

StrataGold used industry best practices to collect, handle and assay soil, rock and core samples collected on the Tassawini and Sonne projects. The procedures are documented in detailed manuals describing all aspects of the exploration data collection and management. SRK reviewed the procedures in 2007 and found that they generally meet or exceed industry best practices.

Until the third quarter of 2006, all sample pulps were shipped and prepared at ISO 9000 registered ALS Chemex preparation facilities in Canada. Following the setup of a preparation laboratory in Georgetown in late 2006, samples were subsequently sent there before pulps were shipped to Acme's assaying facilities in Santiago, Chile. Acme labs are also certified ISO 9000. Samples were assayed for gold by conventional fire assay method with an atomic absorption (AA) finish for each sample. Another subsample was submitted for multi-element ICP analysis. StrataGold used industry best practices quality control measures during their exploration at Tassawini and Sonne projects.

Data Verifications

In accordance with NI43-101 guidelines, SRK visited the Tassawini and Sonne projects between November 12 and 16, 2007 for the preparation of resource estimations for StrataGold. During this visit, SRK reviewed the field procedures used by StrataGold to collect and to interpret their exploration data for these projects while active drilling was ongoing.

SRK visually examined assaying quality control data produced by StrataGold. SRK analyzed the StrataGold quality control data using bias charts and various relative precision plots. This review suggests that the assay results delivered by ALS Chemex and Acme Laboratories are generally reliable for the purpose of resource estimation. SRK found no evidence for sampling or assaying bias in the available borehole database.

Mineral Resource Estimation

The mineral resource model presented herein represents the second resource evaluation for the Tassawini and Sonne gold deposit. The resource estimate was completed by SRK's Dr. Lucy Roberts under the supervision of G. Dave Keller, P. Geo, an independent qualified person as this term is defined in National Instrument 43-101. The effective date of this resource estimate is June 10, 2008.

The database used to estimate the mineral resources was audited by SRK, after which SRK modelled the gold mineralization boundaries using a geological interpretation prepared by StrataGold personnel with data collected until November 2007. The current drilling information is sufficiently reliable to interpret with confidence the boundaries of the gold mineralization and the assaying data is sufficiently reliable to support estimating mineral resources.

The block models were validated by comparing the block model mean grades with the declustered composite mean grades and through validation slices through the block models. The differences between the declustered mean composite grades and the block

grades are relatively small, demonstrating that the model is similar to the input data. Overall the data validations indicate that no biases were introduced.

Basic population statistics of the sample assays in each of the mineralized zones were assessed independently, as well as being combined into a global dataset. All of the statistical distributions for each of the individually modelled bodies are relatively similar, being neither normal nor lognormal, with the possibility of mixed populations in the majority of cases.

Variograms were used to assess grade continuity along various ellipse axes and to determine appropriate grade interpolation ranges. Omnidirectional and directional pairwise variograms (including a nugget effect) were constructed and fitted for each modelled gold mineralized zone. Unfortunately, variograms were unable to be determined for the individually modelled zones; hence, all of the data were combined to derive directional variograms that were subsequently used to model the individual zones separately.

Grade capping was assessed using probability plots for assay samples within each domain. In general the gold composites belong to a single population, requiring minimal outlier treatment. Six composites were capped in the Tassawini West zone and one in the Tassawini East zone.

Separate block models were produced for each of the Tassawini and Sonne areas. Block models were not rotated as the changes in strike direction through the Tassawini model, and the application of square blocks in plan view made block rotation unnecessary. Block sizes were chosen to reflect the average spacing of drill lines along the strike. Grade data for each of the modelled structures were interpolated within individual structures only. Soft boundaries between oxidization states were applied and accordingly reported separately as saprolite, weathered, or fresh. Grades were estimated into the block model using ordinary kriging in three passes for each mineralized zone.

Mineral resource classification has been carried out using a combination of drillhole spacing, geological and wireframe confidence and was modelled visually by digitizing a wireframe. Indicated Mineral Resources have been defined in the Tassawini East, Tassawini West, Tassawini South, Black Ridge and Mine Creek areas of the Tassawini domain where drilling is adequate to demonstrate geometrical and grade continuity to a reasonable level. Inferred Mineral Resources have been defined in some parts of Black Ridge, Tassawini East and Tassawini West. All of the modelled solids in Sonne have been classified as Inferred Mineral Resources. The Tassawini and Sonne mineral resources were classified according to the guidelines of National Instrument 43-101 and accompanying documents 43-101.F1 and 43-101.CP.

Pit optimisation studies were conducted to determine the depth to which Mineral Resources were reported. Whittle/Gemcom Four-X Analyser ("Whittle") software package was utilised to estimate the value of the individual mining blocks at the pit boundary with the cost for waste stripping at the pit boundary. SRK assumed a gold price USD 750 per troy ounce; a metallurgical recovery of ninety-five percent; unit mining, processing and G&A costs of USD 2, USD 10 and USD 3 per tonne respectively, and slope angles of sixty degrees in all areas. These parameters were selected by SRK to represent an "optimistic" expectation reflecting the intent that the resource should comprise material that is potentially economically mineable in the future.

At Tassawini, the optimised pit-shell extends to approximately 225 metres below ground coinciding with the maximum depth of the modelled wireframes. The Whittle pits effectively "bottom out" at the base of the modelled mineralization, indicating that

all of the wireframes can be termed "*potentially economically mineable*". At Sonne, the Whittle pit-shell is heavily affected by the low grades of the modelled solids, extending to approximately twenty to fifty metres below surface. The mineral resource statement for the Tassawini and Sonne gold deposits is presented in Table i.

Resource	Quantity	Grade	Contained metal
Classification	(kť)	Gold (g/t)	Gold (koz)
Indicated			
Saprolite	5,588	1.3	229
Weathered	986	1.1	35
Fresh	4,193	1.3	173
Total	10,766	1.3	437
Inferred			
Saprolite	1,625	0.7	1
Weathered			
Fresh	240	3.1	24
Total	1,926	1.0	62

Table i: Mineral Resource Statement* for the Tassawini and SonneGold Deposits, Guyana, SRK Consulting March 4, 2008.

Reported at a cut-off of 0.5 g/t gold. Mineral resources are not mineral reserves and do not have demonstrated economic viability. All figures have been rounded to reflect the relative accuracy of the estimates. The cut-off grades are based on metal price assumptions, US\$750 per ounce of gold and metallurgical recoveries of ninety-five percent gold.

Conclusions and Recommendations

SRK reviewed and audited the exploration data available for the Tassawini and Sonne gold projects. This review suggests that the exploration data accumulated by StrataGold is generally reliable for the purpose of resource estimation.

Following geostatistical analysis and variography, SRK constructed an initial mineral resource block model for the Tassawini and Sonne gold deposits constraining grade interpolation to within the various mineralization domains. After validation and classification, SRK used preliminary pit optimization routines to assess the portions of the Tassawini and Sonne gold deposits that shows reasonable prospects for economic extraction from an open pit. A pit shell was used to report an open pit resource at a 0.5 gpt gold cut-off.

Mineral resources for the Tassawini and Sonne gold deposits have been estimated in conformity with generally accepted CIM "Estimation of Mineral Resource and Mineral Reserves Best Practices" Guidelines.

In the opinion of SRK, the block model resource estimate and resource classification reported herein are a reasonable representation of the global gold mineral resources found in the Tassawini and Sonne gold deposits. Mineral resources are not mineral reserves and do not have demonstrated economic viability. There is no certainty that all or any part of the mineral resource will be converted into mineral reserve.

In reviewing the mineral resource model SRK draws the following conclusions:

The preliminary pit optimization work conducted to allow SRK to report an open pit resource clearly indicates that the ultimate pit depth is driven by the known depth of mineralization.

Due to the large amount of reverse circulation drilling, especially at Sonne, large parts of the resource can only be classified as Inferred.

The resource estimation detailed in this report shows that a significant amount of gold is contained within the mineralized zones. Therefore, SRK believes that StrataGold should undertake a Preliminary Economic Assessment to explore the possibilities of extracting the contained metal economically.

In order to base the Preliminary Economic Assessment on project specific data, StrataGold should consider undertaking the following studies:

- Detailed topographic survey to derive accurate topography data (the area should include the deposit and other potential mine infrastructures such as processing and mine waste facilities);
- ABA testing and geochemical characterization of sulphide and barren rocks;
- Bench scale metallurgical studies including petrography, grinding and milling testing and metallurgy focusing on optimization of processing and resulting in a conceptual mill flow sheet.
- Review of geotechnical data including recommendations for improving field geotechnical data collection and consideration for specific geotechnical drilling.

These studies are essential to complete the characterization of the Tassawini project, to support a meaningful conceptual mine design and to provide robust key assumptions for the base case of an economic model considered for a Preliminary Economic Assessment. It is difficult to provide accurate cost estimate for completing a Preliminary Economic Assessment because this type of study typically involves a significant component of field studies (hydrology, geotechnical, environmental and metallurgy) the cost of which are dependent on the specific scope of work. In our experience, the preparation of a Preliminary Economic Assessment for an open pit project that is incompletely characterized and is located in a remote location typically costs between US\$300,000 to US\$500,000. Completion of the additional recommended studies is estimated to cost approximately \$1,000,000.

The Preliminary Economic Assessment will build on this resource estimate completed by SRK and will include: capital cost for mining, plant and infrastructure; operating costs for mining, plant, camp, G&A; pit optimization and preliminary pit design; waste dump construction; preliminary tailings construction; mine planning and scheduling; reserve statement; geotechnical review, water management plan, pit slope determinations, updated metallurgical test work, mapping of the environmental permitting requirements, preliminary environmental advisement, conceptual decommissioning and mine closure plan and requirements and a technical economic model.

StrataGold should consider completing a desktop scoping study prior to commencement of a Preliminary Economic Assessment.

Table of Contents

FC	preword	ii
Ex	Recutive Summary Introduction Property Description and Agreements Location, Access and Physiography History Regional and Local Geology Deposit Types and Mineralization Exploration and Drilling Sampling Method, Approach and Analyses Data Verifications Mineral Resource Estimation Conclusions and Recommendations	. iv iv iv iv v v v
Li	st of Tables	xiii
Li	st of Figures	xiv
1	Introduction 1.1 Scope of work 1.2 Basis of the Technical Report 1.3 Qualification of SRK 1.4 Site visit	1 1 2 3
-		
2	Reliance on other Experts and Declaration	. 4
2 3	Reliance on other Experts and Declaration Property Description and Location	4
2 3 4	Reliance on other Experts and Declaration Property Description and Location Accessibility, Climate, Local Resources, Infrastructure and Physiography	4 6 .10
2 3 4 5	Reliance on other Experts and Declaration Property Description and Location Accessibility, Climate, Local Resources, Infrastructure and Physiography History	4 6 .10 .12
2 3 4 5 6	Reliance on other Experts and Declaration Property Description and Location Accessibility, Climate, Local Resources, Infrastructure and Physiography History Geological Setting 6.1 Regional Geology 6.2 Property Geology	4 6 .10 .12 .15 .17
2 3 4 5 6 7	Reliance on other Experts and Declaration Property Description and Location Accessibility, Climate, Local Resources, Infrastructure and Physiography History Geological Setting 6.1 Regional Geology 6.2 Property Geology Deposit Types	4 6 .10 .12 .15 .15 .17 .19
2 3 4 5 6 7 8	Reliance on other Experts and Declaration Property Description and Location Accessibility, Climate, Local Resources, Infrastructure and Physiography History Geological Setting 6.1 Regional Geology 6.2 Property Geology Deposit Types Mineralization 8.1 Tassawini East 8.2 Tassawini West and Mine Creek 8.3 Tassawini South 8.4 Black Ridge 8.5 Sonne25	4 6 .10 .12 .15 .15 .17 .19 .21 .22 .24 .24
2 3 4 5 6 7 8 9	Reliance on other Experts and Declaration Property Description and Location Accessibility, Climate, Local Resources, Infrastructure and Physiography History Geological Setting 6.1 Regional Geology 6.2 Property Geology Deposit Types Mineralization 8.1 Tassawini East 8.2 Tassawini West and Mine Creek 8.3 Tassawini South 8.4 Black Ridge 8.5 Sonne25 Exploration	4 6 .10 .12 .15 .15 .17 .19 .21 .22 .24 .24 .26
2 3 4 5 6 7 8 9 10	Reliance on other Experts and Declaration Property Description and Location Accessibility, Climate, Local Resources, Infrastructure and Physiography History Geological Setting 6.1 Regional Geology 6.2 Property Geology Deposit Types Mineralization 8.1 Tassawini East 8.2 Tassawini West and Mine Creek 8.3 Tassawini South 8.4 Black Ridge 8.5 Sonne25 Exploration Drilling	4 6 .10 .12 .15 .17 .19 .21 .22 .24 .24 .24 .26 .27

		~~
11	Sampling Approach and Methodology	.29
	11.1 Core Sampling	. 29
	11.2 Reverse Circulation	. 31
	11.3 Channel sampling	. 31
	11.4 Geochemical soil sampling	. 32
12	Sample Preparation, Analyses and Security	.33
	12.1 Sample Preparation and Analysis	33
	12.1.1 Diamond Drill Core samples	33
	12.1.2 Reverse Circulation	33
	12.2 Quality Assurance and Quality Control Programs	34
	12.2.3 Twin Hole Drilling	34
	12.2.4 Diamond Drill Core samples	35
	12.2.5 Reverse Circulation samples	36
	12.3 Specific Gravity Data	. 37
	12.3.6 Measured Core Volume (Caliper) Method	37
	12.3.7 Volume Displacement Method	37
	12.3.8 Percent Water Content	38
13	Data Verification	.39
	Adjacent Drenertice	40
14	Adjacent Properties	.40
15	Mineral Processing and Metallurgical Testing	.41
16	Minaral Resource and Minaral Reserve Estimates	40
10	Mineral Resource and Mineral Reserve Estimates	.42
	16.1 Introduction	. 42
	16.2 Database Construction and Validation	42
	16.3 Density Data	43
	16.4 Solid Body Modelling	. 43
	16.5 BIOCK MODEL	. 44
	16.6 Statistical Analysis	. 44
	16.6.9 Statistical Analysis – Lassawini	47
	16.7 Semi Veriegrem Analysis – Sonne	41
	16.7 Seriii-Valiograma Tassawini	. 37 57
	10.7.11 Vallograms - Tassawilli	
	16.8 Grade Capping	58
	16.9 Grade Internolation	59
	16.10 Estimate Validation	59
	16.10.13Mean Block Grade versus Declustered Composite	
	Mean Grade	59
	16.10.14 Validation Slices	60
	16.10.15 Validation Summary	61
	16.11 Mineral Resource Classification	63
	16.12 Mineral Resource Statement	64
	16.13 Global Grade Tonnage Curves	68
	16.14 Previous Mineral Resource Estimates	75
17	Other Relevant Data	.76
18	Interpretation and Conclusions	.//
19	Recommendations	.79
20	References	.81

APPENDIX A	82
APPENDIX B	
APPENDIX C	
APPENDIX D	

List of Tables

Table i: Mineral Resource Statement* for the Tassawini and Sonne GoldDeposits, Guyana, SRK Consulting March 4, 2008.Viii
Table 1: Summary of Analytical Quality Control Data Produced by StrataGold on the Tassawini Gold Project. 36
Table 3: Density Values for Tassawini by Oxidation State43
Table 4: Block Model Parameters44
Table 5: Short Composites (Less than 1.5 metres) Removed From Database. 45
Table 6: Summary Statistics for Composited Gold Grades in Tassawini East48
Table 7: Summary Statistics for Composited Gold Grades in Tassawini South 49
Table 8: Summary Statistics for Composited Gold Grades in Tassawini West
Table 9: Summary statistics for Composited Gold Grades in Mine Creek51
Table 10: Summary Statistics for Composited Gold Grades in Black Ridge52
Table 11: Summary statistics for composited gold grades in Zone 10053
Table 12: Summary statistics for composited gold grades in Zone 20054
Table 13: Summary Statistics for Composited Gold Grades in Zone 30055
Table 14: Summary statistics for composited gold grades in Zone 40056
Table 15: Modelled Variogram Parameters for all Mineralized Zones57
Table 16: Modelled Variogram Parameters for all Mineralized Zones58
Table 17: High Grade Cuts Applied To the Composited Data58
Table 18: Tassawini Block Mean Grade Comparison. 60
Table 19: Sonne Block Mean Grade Comparison60
Table 20: Search Parameters for Tassawini62
Table 21: Search Parameters for Sonne62
Table 22: Whittle shell optimization parameters65
Table 23: Mineral Resource Statement* for the Tassawini and Sonne GoldDeposits, Guyana, SRK Consulting March 4, 2008.
Table 24: Mineral Resource* By Zones for the Tassawini and Sonne Gold Deposits
Table 25: Tassawini Global Summary – Comparative Cut-offs 68
Table 26: Sonne Total Saprolite Summary – Comparative Cut-offs
Table 27: Black Ridge Summary – Comparative Cut-offs70
Table 28: Mine Creek – Comparative Cut-offs
Table 29: Tassawini East – Comparative Cut-offs

Table 30: Tassawini South – Comparative Cut-offs	73
Table 31: Tassawini West – Comparative Cut-offs	74
Table 32: Previous Mineral Resource Statement for the Tassawini Gold Project, S. Lomas, March 15, 2007	75
Table 33. Estimated Cost for Proposed Program	80

List of Figures

Figure i: Land Tenure Map, February 10, 2010.	. iii
Figure 1: Location of the Tassawini and Sonne Projects situated in the Barama-Waini District	6
Figure 2: StrataGold interests in Guyana	8
Figure 3: Tassawini and Anaturi Prospecting Licences (PL) and Medium Scale Mining Permit (MSMP).	8
Figure 4: Generalized regional geology of north-western Guyana.	16
Figure 5: Model of the Tassawini East zone; view toward the north	21
Figure 6: Model of the Tassawini West and Mine Creek zones, showing stacked and en echelon sheets as well as south-westerly plunge; view towards the north	23
Figure 7: A target generation map from a combined interpretation of drilling, geochemical and geophysical data, structural and petrographic studies.	26
Figure 8: Covered outdoor core logging facility; Tassawini exploration camp	30
Figure 9: Covered outdoor core cutting facility, Tassawini exploration camp	30
Figure 10: Quantile-quantile plot showing the correlation between RC and DDH assay data.	35
Figure 11: Correlation of site and lab density data (from internal Stratagold report).	38
Figure 12: Distribution of drill holes and drill hole type for the Tassawini and Sonne areas	46
Figure 13: Tassawini East - Grade Histograms.	48
Figure 14: Tassawini South - Grade Histograms	49
Figure 15: Tassawini West - Grade Histograms	50
Figure 16: Mine Creek Grade Histograms	51
Figure 17: Black Ridge Grade Histograms	52
Figure 18: Zone 100 Grade Histograms	53
Figure 19: Zone 200 Grade Histograms	54
Figure 20: Zone 300 Grade Histograms	55
Figure 21: Zone 400 Grade Histograms	56

Figure 22: Tassawini Global Grade Tonnage Curve	.68
Figure 23: Sonne Total Saprolite Grade Tonnage Curve	.69
Figure 24: Black Ridge Grade Tonnage Curve	.70
Figure 25: Mine Creek Grade Tonnage Curve	.71
Figure 26: Tassawini East Grade Tonnage Curve	.72
Figure 27: Tassawini South Grade Tonnage Curve	.73
Figure 28: Tassawini West Grade Tonnage Curve	.74

1 Introduction

StrataGold Guyana Inc. ("StrataGold"), for whom this report is prepared, is an indirectly held, wholly owned subsidiary of StrataGold Corporation and is actively exploring for gold in Guyana.

This report documents a mineral resource model for the Tassawinin and Sonne projects, prepared by SRK Consulting (Canada) Inc. ("SRK") for StrataGold in February 2008. Both projects are located in Guyana and included in the Tassawini Prospecting Licence ("PL") and Medium Scale Mining Permits ("MSMP's") held by StrataGold.

StrataGold retained SRK to model the gold mineralization and prepare a revised mineral resource estimate for the Tassawini and Sonne gold deposits. This technical report documents the resource model constructed by SRK. It was prepared following the guidelines of the Canadian Securities Administrators National Instrument 43-101 and Form 43-101F1, and in conformity with generally accepted CIM "Estimation of Mineral Resources and Mineral Reserves Best Practice Guidelines".

1.1 Scope of work

The scope of work, as defined in the letter of engagement, includes the construction of a mineral resource model for the Tassawini and Sonne mineralized zones investigated by StrataGold and the preparation of an independent technical report in compliance with NI43-101 and Form 43-101F1 guidelines. This work typically involves an assessment of the following aspects of this project:

- Topography, landscape, access;
- Regional and local geology;
- History of exploration work in the area;
- Audit of historical resource estimation procedures at Tassawini and Sonne;
- Audit of exploration work carried out by StrataGold;
- Mineral resource estimation for Tassawini and Sonne;
- Validation; and
- Recommendations for additional work.

1.2 Basis of the Technical Report

This report is based on information collected by SRK during the site visit and on additional information provided by StrataGold.

SRK conducted certain verifications of exploration data from archived files maintained by the Company. The information contained herein is based on information believed to be reliable.

This technical report is based on the following sources of information:

- Discussions with StrataGold exploration personnel;
- Personal inspection the Tassawini and Sonne projects and surrounding areas;
- Review of exploration work conducted by StrataGold; and
- Additional information obtained from public domain sources.

1.3 Qualification of SRK

The SRK Group comprises over 700 professionals, offering expertise in a wide range of resource engineering disciplines. The SRK Group's independence is ensured by the fact that it holds no equity in any project and that its ownership rests solely with its staff, which permits SRK to provide its clients with conflict-free and objective recommendations on crucial judgment issues. SRK has a demonstrated track record in undertaking independent assessments of Mineral Resources and Mineral Reserves, project evaluations and audits, technical reports and independent feasibility evaluations to bankable standards on behalf of exploration and mining companies and financial institutions worldwide. The SRK Group has also worked with a large number of major international mining companies and their projects, providing mining industry consultancy service inputs.

The mineral resource estimate was carried out by Dr. Lucy Roberts from the SRK office in Cardiff, Wales. Dr. Lars Weiershäuser, P.Geo (APGO#1504) prepared grade shells used to constrain grade estimation and reviewed analytical quality control data. G. David Keller, P.Geo (APGO#1235) supervised the work of Dr. Roberts and co-authored this technical report. By virtue of t heir education and relevant work experience both Dr. Weiershäuser and Mr. Keller are Qualified Persons as this term is defined by NI 43-101. Both Dr. Roberts and Dr. Weiershäuser visited the subject properties during November 2007.

The preparation of the technical report was a joint effort between Dr. Roberts and Dr. Weiershäuser.

Dr. Weiershäuser is a consulting geologist with SRK and has been employed by SRK since February 2007.

Dr. Roberts is a resource geologist with SRK and has been employed by SRK since March 2006.

Mr. Keller is a Principal Resource Geologist with SRK and has been employed by SRK since 2004. He has been engaged in mineral deposit evaluations and resource estimates since 1986.

1.4 Site visit

In compliance with NI 43-101 guidelines, Dr. Roberts and Dr. Weiershäuser visited the Tassawini and Sonne gold projects between November 12 and 16, 2007. The purpose of the visit was to review exploration work carried out by StrataGold during active drilling in preparation for resource estimation work to be completed by SRK on these projects. In detail, the review included:

- Drilling procedures;
- Surveying procedures;
- Core handling, description and sampling procedures;
- Data entry and data management procedures;
- Geological interpretations; and
- Geological and structural setting of the gold mineralization.

A memorandum was submitted to StrataGold immediately after the site visit to summarize work completed as well as initial findings.

SRK's opinion contained herein and effective <u>June 10, 2008</u>, is based on information provided to SRK by StrataGold throughout the course of SRK's investigations, which in turn reflect various technical and economic conditions at the time of writing. Given the nature of the mining business, these conditions can change significantly over relatively short periods of time. Consequently actual results may be significantly more or less favourable.

This report includes technical information, which requires subsequent calculations to derive sub-totals, totals and weighted averages. Such calculations inherently involve a degree of rounding and consequently introduce a margin of error. Where these occur, SRK does not consider them to be material.

SRK is not an insider, associate or an affiliate of StrataGold, and neither SRK nor any affiliate has acted as advisor to StrataGold or its affiliates in connection with this project. The results of the technical review by SRK are not dependent on any prior agreements concerning the conclusions to be reached, nor are there any undisclosed understandings concerning any future business dealings.

The Tassawini and Sonne gold projects are located within an area in which mining and exploration activities have been performed since 1907. Moderate new surface disturbances have occurred within the project areas arising primarily from surface exploration activities such as drilling and prospecting. However, the project areas have been affected significantly throughout the history of the mining camp, which dates back as early as the early 1900's.

Potential environmental liabilities associated with the Tassawini and Sonne projects were excluded from the work program. As such, no verification was conducted by SRK and no opinion is expressed regarding the environmental aspect of this exploration project.

SRK was informed by StrataGold that early in 2007, StrataGold sought the opinion of Bruno Picard, High Commissioner for Canada in Guyana and Canada's Representative to CARICOM (Caribbean Community) with regard to the land package that Venezuela claims is within its national boundaries. Tassawini is found within this area claimed by Venezuela. The author has no expertise to give an opinion regarding this international political situation and has relied on the opinion of the High Commissioner with regards to this matter.

SRK was further informed by StrataGold that in May 2004 that StrataGold sought the legal opinion of Timothy Jonas (L.L.B.) of the law firm de Caires Fitzpatrick and Karran, to confirm that Mr. Wayne Vieira was the legal owner of the Tassawini Medium Scale Mining Permits (MSMP's) and that they were

not subject to any prior claim by another party. It was Jonas' opinion that Viera had a non-exclusive right to enter the land, and an exclusive right to mine for gold, as long as the permits were renewed over time, and that Vieira only had the right to mine for gold within the permitted area. In December of 2004, Newmont Mining Corporation ("Newmont") sought a legal opinion from the law firm Cameron and Shepherd of Guyana as to the legality and ownership of the MSMP's for Tassawini. It was their opinion that the MSMP's are in good standing, were legally held by Vieira and were free and clear of any claim, burden, lien or encumbrances. They further found that there were no limitations that would affect the ability of Vieira, StrataGold or Newmont to enter into a binding agreement with respect to the MSMP's. This author has relied heavily on these opinions to gain confidence in the land tenure for the Tassawini and Sonne Projects with respect to the MSMP's.

StrataGold informed SRK that the land titles are in good standing but are due for renewal in 2008. The land package consists of the Barama Reconnaissance Permit with a size of 4055 square kilometres, the Tassawini Prospecting License with a size of 48090 hectares, and the Anaturi Prospecting License with a size of 4828 hectares. The prospecting licenses are enclosed within the larger reconnaissance permit.

SRK was informed by StrataGold that there are no known litigations potentially affecting the Tassawini and Sonne gold projects.

3 Property Description and Location

The Tassawini Project is located in the Barama-Waini District of north western Guyana, approximately 170 kilometres northwest of the capital, Georgetown, Guyana (Figure). The Project is centered at latitude seven degrees and thirtyone minutes North and longitude fifty-nine degrees thirty-five minutes West at an average elevation of fifty metres above mean sea level.

StrataGold has interests in a large land package in Guyana comprising various types of licences and agreements that covers more than 400,000 hectares (Figure 2). The Tassawini and Sonne projects are located completely within the Tassawini PL, which encompasses an area of 4,814 hectares, granted "save and except" four Tassawini MSMP's totalling 1,381 hectares; the latter are totally enclosed within the Tassawini PL (Figure 3).

The Tassawini MSMP's consist of four contiguous MSMP's, covering a total area of 1,381 hectares. The permit boundaries were located by compass survey and later verified by a global positioning system (GPS) survey by the Guyana Geology and Mines Commission ("GGMC"). The four MSMP's were issued under Section sixty-three of the Mining Act, 1989 and the Mining Regulations thereto. More specifically the four MSMP's are named MP No.47/98, MP No.23/01, MP No.24/01 and MP No.25/01. The permits are located in the Tassawini area of Northwest Mining District No. 2 as shown on Terra Survey Topographic Sheets Kaituma 5 SE and Kokerite 10 NE at a 1:50,000 scale in the GGMC offices.

The Tassawini MSMPs are optioned to StrataGold from Mr. Wayne Vieira and are subject to the Tassawini Option Agreement. The Tassawini Option Agreement is subject to the following schedule of payments and commitments:

- StrataGold paid USD 150,000 to the Vendor as an initial payment on June 24th, 2004 (signing date) and;
- StrataGold paid USD 150,000 on each of the 6 (Dec, 2004), 12 (June 2005), 18 (Dec, 2005) and 24 (June, 2006) month anniversaries of the agreement date;
- StrataGold made aggregate expenditures of USD 2,600,000 on the property within thirty-six months of the signing date;
- StrataGold issued 800,000 shares and 400,000 share purchase warrants over a period of thirty-six months since June 10, 2004;
- On June 14th, 2007, StrataGold announced that it had met all the option exercise obligations contained in the Option Agreement relating to the Tassawini Anaturi Project in Guyana and, as a result, had acquired a 100 percent interest in the properties, subject to certain rights retained by the Vendor described below;
- On July 13th, 2007, StrataGold announced that it had, subsequent to the exercise of the Tassawini Option Agreement announced on June 14th, 2007, agreed to buy-out the Alluvial Gold mining rights for USD 500,000 in two instalments of USD 250,000 from the Vendor. The initial payment of USD 250,000 has been made with the final amount due July 4th, 2008;
- StrataGold has covenanted that it shall make all reasonable efforts, consistent with technically and economically prudent industry practice to complete a "Feasibility Study" on the property within eighteen months of the exercise of the option. The Vendor has agreed to amend the Tassawini Option Agreement by extending the period of delivery of a 'Feasibility Study' from eighteen months to twenty-four months. The amended date for delivery of the 'Feasibility Study' is June 8th, 2009;
- The Vendor is entitled to a 2.5 percent NSR royalty and StrataGold has the right to acquire 100 percent of the Vendor's 2.5 percent NSR for payments aggregating USD 4,000,000 at any time;
- The Tassawini Option Agreement is supported by an irrevocable power of attorney duly executed on the 17th day of June 2004 and registered in the Deeds Registry, Georgetown for the duration of the Option Period, for the purpose of allowing StrataGold to maintain all mineral rights related to the MSMP's.

Surface rights are regulated by the Government but the Tassawini MSMP's and a large portion of the Tassawini PL fall within the Chinese Landing Amerindian Reservation, which was consulted prior to the issuance of the permits to Vieira. Amerindian rights and privileges are protected under the Amerindian Act of Guyana. The Act spells out many provisions such as the creation of local governments, registration and administration of Amerindian affairs including employment and taxes. The Act also requires the government to consider the protection and management of property and legal proceedings on behalf of Amerindians.

StrataGold has signed a Memorandum of Understanding (MOU) with the Amerindians of Chinese Landing Reservation which executed on August 17th, 2007 and provides support for StrataGold's current and future exploration activities within the Chinese Landing Reservation and the pursuit of an application for gold mining operations should the Tassawini Project warrant this in the future.

In exchange, StrataGold has committed itself to providing a number of community benefits primarily focused on improving the existing education program, community health and employment opportunities. Under the terms of the MOU, the community and StrataGold have developed a committee to ensure the residents of Chinese Landing have a formal mechanism and opportunity to raise issues of community importance related to StrataGold's operations.

Should gold production commence, the Guyana Government is eligible to receive a five percent royalty on total production with no back-in rights and no encumbrances.

There are no special permitting requirements for exploration level work in Guyana for geological, geophysics, geochemical surveys, line cutting, trenching or drilling programs on the Tassawini Project, outside of the PL's and MSMP's already in place. StrataGold is required to submit proposed work program reports with an estimated budget to the GGMC along with quarterly and annual reports on the exploration work completed.

StrataGold will require an Environmental Authorization prior to beginning any mining activities at Tassawini. The Guyana Environmental Protection Act, No. 11 of 1996, Part IV requires that developers of proposed projects that are deemed by the Agency to have potentially significant impacts on the environment or listed in the Fourth Schedule must apply to the Agency for Environmental Authorizations. Gold mining operations are listed under the 'Mining / Mineral Processing' section.

The Tassawini – Anaturi Project lies within the boundaries of a border dispute with Venezuela where Venezuela is laying claim to roughly 39,000 square miles of Guyana's territory. According to the opinion of the High Commissioner for Canada in Guyana and Canada's Representative to CARICOM (solicited early in 2007) Venezuela's claim has no international support and will not impact the Tassawini -Anaturi Project.

4 Accessibility, Climate, Local Resources, Infrastructure and Physiography

The Tassawini Project is accessible by small aircraft directly from Georgetown, Guyana; flight time for the approximately 170 kilometre distance is forty to fifty minutes. StrataGold built an airstrip on the Tassawini Project site in 2005 that is permitted by the Guyana Aviation Authority. The airstrip at Tassawini is 650 metres long and twenty metres wide and can accommodate an Islander, Caravan or similar light aircraft.

Access to the area from the capital city of Georgetown is also possible by ocean and river navigation or by a combination of aircraft and river travel. For barges traveling from Georgetown via the Atlantic coastline, the Waini River and then the Barama River, the journey covers a total distance of 450 kilometres. This route includes 265 kilometres of travelling along the Atlantic coastline, followed by 120 kilometres of river travel inland on the Waini River to the confluence of the Barama River, followed by sixty-five kilometres of travel upstream on the Barama River to Tassawini Landing, located on the property.

The Barama River is fully navigable for 1000 ton barges when water levels are high during the peak of the rainy season and for two months after the end of the rainy season. At the peak of the dry season the Barama River is not navigable for 1000 ton large barges, and smaller six to twelve metre boats must be used.

Alternatively, access to the propertie is by aircraft to the Kwebana airstrip located along the Waini River which is followed by motorboat downstream on the Waini River to the confluence with the Barama River, and then upstream along the Barama River a distance of eighty kilometres to Tassawini Landing. An ATV / tractor trail is driven for five kilometres from Tassawini Landing on the Barama River to the historical gold workings on the Tassawini MSMP's. Tides affect the Barama River to within twenty kilometres of the property. The climate is tropical and humid and the annual rainfall averages 2,500 millimetres per year. Generally, two rainy seasons, from early May to mid-July, and from early December to mid-January occur in Guyana. Dry-seasons occur during the remaining months with intermittent rainfall. The climate does not interfere with year-round operation of mines in Guyana.

Physiographically, the property is characterized by low relief within a coastal wetland environment. The elevation of the Tassawini Project area averages fifty metres above mean sea level (AMSL), with an elevation range between twenty metres to eighty metres AMSL. Seasonal flood plains are located in low -lying areas proximal to the Barama River. Tassawini Creek and Doubtful Creek are intermittent streams that flow nine months of the year into Huri Creek. Huri Creek flows twelve months of the year southward into the Barama

River. The Barama River flows northeast into the Waini River, which flows northward into the Atlantic Ocean. The area is heavily vegetated with primary tropical rainforest, although there are sporadic small swampy areas that support only grasses or stunted trees and bushes. Areas that have been cleared in the past for small scale mining and moving agriculture are generally covered with secondary re-growth forest.

There is no power grid available mainly because of the remote location of the properties, and the current source of power at the property is strictly from midsize diesel powered generators. Water is readily available from local springs and creeks to supply the current exploration camp and for drilling purposes year round. Water wells or water from the nearby Barama River could be utilized for future mining operations.

5 History

The area around the Tassawini Project has been actively explored for gold since 1907; the following is a summation of the work completed to date in the area:

1907 to 1914 Saprolite and Placer Mining

Between the years 1907 and 1914, an American company, The British Guiana Gold Company, used large steam-powered turbines and pressure pumps to hydraulically mine from the Tassawini Mine to produce an estimated (reported) 11,244 ounces (Lengyel, 1996).

At some unknown time, but probably between 1907 and 1914, a small steampowered stamp-mill mining and crushing operation was undertaken in the north-central part of the Anaturi PL. Past gold production from this area is not known.

From 1940 until 1981, geological surveys and reports were completed by the GGMC over the property. These government surveys were published and included work by Davis (1940), Carter (1966), Barron (1966), Punwasee and Muller (1966). Additional reviews of previous work was provided by, Macdonald (1968), and Barron (1969). Davis (1940) conducted a channel sampling program on the Tassawini Mine open cuts.

In 1964, the United Nations (UN) funded several programs in the area which included an airborne survey that was designed to test input anomalies for volcanogenic massive sulphide (VMS)-related geochemical anomalies (Isaacs and Rattew, 1964; Rattew 1966).

The property remained dormant until 1984 when Paranapanema S.A. Mineracao Industria E Construcao ("Paranapanema") was granted a prospecting license and started to explore the Tassawini PL area (including the Tassawini MSMP area) until 1989. Paranapanema completed the following programs:

- Collection of soil geochemistry samples on a 200 metre by 250 metre grid (and locally on a twenty-five by twenty-five metre grid);
- Excavation of twenty-six trenches for a total of 2,922 metres and 1,718 samples;
- Advanced thirty-one auger holes totalling 265 metres and the collection of 270 samples;
- Collection of 706 lithogeochemical samples from the open cuts in the Tassawini Mine area;
- Geological mapping of open cuts and trenches at scales of 1:50 and 1:250.
- Ground geophysics including radiometry, EM-Slingram, magnetics and induced polarization;

• Diamond drilling of 116 drill holes totaling 10,731 metres. 5,838 core samples were sent for analysis.

Paranapanema estimated a geological resource in the late 1980 for the project; no proper documentation exists to accurately report the grades and tonnages of this historical resource. Kilborn Limited ("Kilborn") of Canada was commissioned to complete a pre-feasibility study, which was followed by a more detailed study. In this later study, Kilborn estimated a historical mineable reserve of 1,422,678 tonnes with an averaged grade of 1.97 g/t Au. This is a historical figure that is presented for comparative purposes only. There was no cut-off nor classification reported by Kilborn for this reserve estimate. The work was completed prior to NI 43¬101 definitions for reporting. No reliance should be placed on this figure.

After Paranapanema, the property was returned to the GGMC, where it was sold in a closed-bid auction to Mr. Wayne Vieira, who purchased the Tassawini MSMP's in 1995 for USD 100,000. Vieira, a Guyanese citizen, commenced mining the alluvial deposits located on Tassawini Creek in 1995, and searched for a potential joint venture partner to explore and evaluate the economic potential of the gold mineralization that occur in the saprolite and underlying the bedrock.

In 1995, Vieira entered into a joint venture agreement with a Canadian junior mining company, Menora Resources Inc. ("Menora"). In 1997, Menora contracted the drilling services of Sonic Soil Sampling Inc. and geological services from Grace and Associates to complete a soil sampling and geological mapping program at the Tassawini MSMP's. Menora contracted Grace and Associates from Lindsay, Ontario, as well as Analytical Solutions Ltd. from Toronto, to conduct a soil geochemistry survey on a 200 by fifty metre grid across the property.

A total of 2,552 samples were collected by hand auger from a depth of one metre below surface using the old Paranapanema grid to control the sample locations. An additional 319 deep-auger samples were collected by hand from a depth of five metres.

Menora's soil and deep auger surveys outlined twelve gold geochemical anomalies with an aggregate surface area of 201,350 square metres. Five of the twelve geochemical anomalies were coincident with mineralized areas identified the Paranapanema drilling, while seven large soil anomalies were new discoveries.

A total of 941 vertical Pionjar drill holes were completed to an average depth of seven metres, with drilling stations spaced twenty-five or fifty metres apart along lines that were spaced 100 metres apart using the old Paranapanema grid. Samples were taken on a one metre interval.

BHP completed a regional remote sensing study between 1996 and 1998 and surveyed a major portion of the Northwest District of Guyana using an integrated geophysical / geochemical approach. The aim of the project was to delineate potential shear-hosted gold deposits, Ernest Henry-style gold systems (Omai-type), Au-Cu, iron ore and kimberlites.

In March 2001, Tassawini Gold Mines ("TGM"), an independent Guyanese company owned by Wayne Vieira, contracted SRK to review the geological and sampling databases for the project and mineral resource and reserve estimates produced by TGM. For their review, SRK was provided with a Gemcom® database that contained data from 115 diamond drill holes, seventy-two channel samples, nineteen trench samples, ninety Banka drill holes and 939 Pionjar drill holes.

SRK reported that TGM applied an upper cut of eleven grams per tonne gold to the assay data used in the "reserve grade" (sic) and that TGM applied a variable correction factor to the assay data and increased the overall grade of the assays by seven percent. The correction factor was variable and was dependant on the initial grade of the assay. TGM felt the correction factor was necessary to "compensate for perceived underestimation of the assay values". SRK's review of the data for the correction factor concluded that there was insufficient support to justify applying correction factor to the assay database.

The historical mineral resource estimate was reported as being "global" and was 2.74 million tonnes with a grade of 2.2 to 2.7 grams per tonne gold. There was no cut-off value included with the estimate results nor were the resources classified into inferred, indicated or measured mineral resource categories as is now required by NI 43-101. SRK reported that the tonnages appeared reasonable but the grade associated with the estimates was not reasonable. The results for this historical resource estimation are for comparative purposes only and are not to be relied on.

There are numerous signs of past and recent small- and hand-scale mining and prospecting throughout the Tassawini Project area.

6 Geological Setting

6.1 Regional Geology

Northern Guyana is in the Archean-Proterozoic Guiana Shield; the shield is composed of a Palaeoproterozoic granite-greenstone terrain with a general east to northeast-trending structural grain. This terrain is considered to be the extension of the West-African Palaeoproterozoic Birimian Supergroup metasedimentary / greenstone terrains, which, in northern Guyana, was mapped originally as part of the Lower Proterozoic Barama-Mazaruni Supergroup (approximately 2,200-2,000 million years in age). The Barama-Mazaruni Supergroup consists of metasedimentary / greenstone terrains intercalated with Archean-Proterozoic gneisses and is intruded by Transamazonian granites as well as mafic and ultramafic rocks (McConnell and Williams, 1969).

The Barama Group consists of pelitic metasediments with metamorphosed lavas and pyroclastic rocks characterized by gondites and manganiferous phyllites, conformably overlain by the Mazaruni Group. The manganiferous phyllite horizons in Guyana occur in the upper portion of the Barama Group and have been mapped in detail as the Matthew's Ridge Formation, since commercial grades of manganese were mined in northwestern Guyana at Matthew's Ridge during the 1960's by the African Manganese Mining Company.

The Mazaruni Group conformably overlies the Barama Group and includes the Cuyuni Formation and the Haimaraka Formation. The Cuyuni Formation consists of pebbly sandstones and intraformational conglomerates typical of greywackes, intercalated with felsic to mafic volcanics. The Haimaraka Formation conformably overlies the Cuyuni Formation and contains a thick sequence of mudstones, pelites and greywackes; significant amounts of volcanic rocks are absent from this formation (McConnell and Williams, 1969).

The regional tectonic setting of the Lower Proterozoic Barama-Mazaruni Supergoup was originally part of a geosynclinal basin locally bordered by an Archean continental foreland, with continental shelf deposits containing intercalated volcanic and metasedimentary rocks. The Trans-Amazonian Orogenic Cycle, a tectono-thermal episode that occurred approximately 2,000 million years ago, resulted in block faulting, crustal shortening, folding, metamorphism and anatexi (Hurley et al., 1967).

The regional metamorphic grade of the Barama Mazaruni Supergroup is generally lower to middle greenschist facies. Near the contact of some of the larger granitic complexes upper greenschist to amphibolite facies is developed locally. Some of the granitic intrusions attain batholithic dimensions, causing segmentation of the volcanic and metasedimentary rocks into individual belts. Syn- to late tectonic calc-alkaline to intermediate intrusives, collectively known as the Trans-Amazonian Granitoids (Voicu et al., 1999), range in composition from granite to granodiorite, diorite, tonolite and adamellite. These intrusions were emplaced during the Trans-Amazonian Orogeny, between 2,250 and 1,960 million years ago. (Gibbs and Barron, 1993).

Figure 4 shows the regional geology of northwestern Guyana. Note that the Trans-Amazonian granites have segmented the Barama-Mazaruni Supergroup in northwestern Guyana. The Trans-Amazonian granites intruded the stratigraphy and caused significant crustal shortening through the development of folds; gold bearing shear zones are associated with this shortening. The Tassawini and Sonne projects are located in a high strain zone proximal to a granitic body known as the Teki batholith. Late stage post-tectonic Avanavero suite dolerite dykes crosscut all of the rock types.

Figure 4: Generalized regional geology of north-western Guyana.

6.2 Property Geology

The geology of the Tassawini and Sonne projects is dominated by a sequence of lower to upper greenschist facies fine-grained meta-sedimentary rocks predominant consisting of phyllites and finely banded fine-grained metaclastites, carboniferous schists and garnet-sulphide-graphite rocks. The protoliths of these rocks are believed to be a variety of fine-grained siltstones and mudstones, which are interpreted to be part of an original carbon-rich carbonate-sulphide iron formation formed under submarine reducing conditions. Due to the tropical climate fresh rock is overlain by thick saprolite. Laterite, if existing, is very thin. The overburden is typically not thicker than approximately two metres, typical of rainforests in tropical climates. This proto-sedimentary sequence is part of a manganese-rich protobasin, which can be traced regionally over an area of 100 by twenty kilometres. Locally, unconformable coarser-grained sedimentary units, including sandstone, arkose and both matrix- and clast-supported conglomerate occur; these units are interpreted to be turbiditic sediments.

The metasedimentary sequence has undergone moderate to intense deformation resulting in the development of a major foliation striking approximately 225 to 230 degrees, dipping moderately to steeply north to northwest. The fabric is especially well-developed in vicinity to the historically mined Tassawini area where StrataGold has focused most of its work to date.

Linear high strain zones, approximately parallel to the predominant foliation display structural transposition of bedding and axial planar faults. However, the precise locations of such faults remain undefined due to the lack of outcrop. These zones of intense deformation provided the most favourable conduits for fluid flow and hence for mineral (gold) deposition. The deformation history is interpreted to be a multiple-stage compressive event with sigma 1 directed predominantly from south to north.

Due to the deformation, carbonate-rich granodiorite intrusions originally emplaced as sills and dikes are now biotite-carbonate-white mica schist. A lobate-cuspate folding style of these intrusive rocks, especially where they intrude the fine-grained protolith, indicates that their emplacement was syntectonic. Multigenerational intrusions are found within both contiguous and separate bodies and all have been deformed to some degree as evidenced by an almost ubiquitous development of penetrative foliation. These intrusive rocks are most likely related to the Teki Batholith, a syntectonic biotite-rich granitediorite complex as close as five kilometres to the north of Tassawini.

Later in the deformation history, the intrusive units acted as resistant bodies within the enclosing more plastic metasedimentary rock package, and heterogeneous strain was focused along their contacts and within doming structures resulting in further extensional stress regimes where mineral (gold) deposition was favoured. This subsequent deformation is represented in the sedimentary protolith on a millimetric scale as a crenulation cleavage, and on a larger scale as variations in the plunge of folds and mineralization. Regional north-northwest- to northwest-, and northeast-trending conjugate faults (normal and reverse) are important and are believed to be relatively late in the deformation history; they may offset stratigraphy on a district scale, both vertically and laterally, but their influence on mineralization geometry at the deposit scale is not known at present. These faults do not appear to significantly offset individual zones as defined by the drilling.

7 Deposit Types

Gold mineralization in the Tassawini and Sonne projects is typical of shear zone hosted gold deposits; this type of deposit is found on all continents and is common in the Archean, Proterozoic, and Phanerozoic era, although some minor differences may exist between the genesis of Archean and Proterozoic deposits.

Generally speaking, Proterozoic shear zone hosted gold deposits form in regional-scale brittle-ductile structures, which makes models of other mesothermal gold deposits applicable. While the details of this deposit type can be complicated, the general model is quite simple. Large amounts of hydrothermal fluid are focused in shear zones, where permeability is higher compared to surrounding country rock. Gold is transported in solution in these fluids and precipitates due to changes in temperature, pressure, Eh, or pH.

The source of the gold is likely the country rock through which metamorphic fluids migrate before being channelled into the shear zones.

Some shear zone hosted gold deposits are spatially associated with felsic intrusive bodies. These granitoids are commonly highly fractionated and oxidized I-type granites; none of these intrusives has been shown to be the source of the gold mineralization, although magmatic fluid signatures along with metamorphic fluid signatures have been found in fluids ascribed to shear zone hosted mineralization.

According to Partington and Williams (2000), areas with regional-scale duplex thrust folds tend to be more strongly mineralized than areas where buckle folding prevails. These thrust fold seem to provide ideal fluid-focussing mechanisms to localize gold-bearing fluids. On a local scale mineralization is clearly controlled by lithological competency contrasts.

Examples of mines exploiting this type of Proterozoic mineralization include Ashanti in Birimian rocks, Ghana; Contact Lake in the Trans Hudson orogen, Canada; Homestake, South Dakota; and Omain, Guyana. The latter deposit is located approximately 170 kilometres south of Georgetown, Guyana. Mineralization is hosted in a granite-greenstone belt consisting of felsic and mafic volcanic rocks, as well as a variety of clastic sediments. The mineralizing event seems to be related to a late brittle phase of deformation that reactivated older structures.

The exploration model for a deposit at Tassawini and Sonne is based on the geology of the Gros Rosabel gold mine presently being exploited by IAMGOLD in Suriname. Mineralization at the Gros Rosabel gold mine occurs in six different deposits and numerous smaller gold occurrences over a strike length of fifteen kilometres.

Known mineralization at Tassawini and Sonne is made up of five separate mineralized zones: Tassawini East, Tassawini West (including Mine Creek), Tassawini South, and Black Ridge, and Sonne. Recent work towards the northwest and west of the Tassawini PL, has shown the presence of important linear structures and iron-rich stratigraphy believed to be related to anomalous gold-in-soil geochemistry; this correlation indicates structural and/or stratigraphic controls of the mineralization striking approximately twenty degrees and with dips to both east and west.
8 Mineralization

8.1 Tassawini East

Mineralization is interpreted to occur in a high strain zone focused on the overturned south-eastern limb of an antiform that strikes forty-five degrees and dips seventy to seventy-five degrees northwest and closes to the northeast. Metre scale isoclinal folding within the mineralized zone can be seen in outcrop; the same style of folding is seen at a finer scale in core and hand sample. The mineralized envelope is modelled as one main sheet with three subsidiary sheets. Two of those sheets occur south of the main mineralized zone and are stacked laterally en echelon (Figure 5).

Figure 5: Model of the Tassawini East zone; view toward the north.

Gold mineralization is present in saprolite as well as in fresh rock; in saprolite gold is associated with limonite-goethite bands and manganese-rich bands which are believed to be derived from the garnetiferous mudstones, while in fresh rock the host lithologies are quartz-invaded banded phyllites and metamudstones, commonly highly garnetiferous (gondite). Structurally underlying the mineralized zone are similar lithologies with significant but discontinuous conglomerate and bands of carbon-rich carbonate-sulphide iron formation; these rocks, however, are significantly less deformed and without significant hydrothermal silica, and are not mineralized.

3D modelling used for the March 2008 resource estimation showed the strike length on the Tassawini East zone is 580 metres long and remains open to the northeast. The average true width of the zones ranges from five to twenty metres, and the zone has been intersected down to 130 metres vertical depth. The modelled grade shell for Tassawini East has a volume of 444,966 cubic metres.

8.2 Tassawini West and Mine Creek

Historical drilling distinguished between Tassawini West and Mine Creek as two separate mineralized zones. More recent drilling conducted by StrataGold has shown that the two zones are in fact connected (Figure 6). To reduce confusion and maintain consistency, both names were retained.

Mineralization is interpreted to occur in several stacked or en echelon high strain zones and parasitic fold hinges located within the overall moderately dipping north-western limb of the same antiform that hosts Tassawini East mineralization. The mineralized bodies strike approximately seventy degrees with a dip seventy to forty-five degrees northwest. The mineralization envelope plunges to the southwest at an average of fifteen to twenty degrees, which is contrary to the plunge of the outcropping host fold system that plunges fifteen degrees to the northeast through the area of historical workings. This contradiction is explained by a re-orientation of originally cross cutting geometries of silica-invaded zones within the original sedimentary stratigraphy, most likely at the time of granodiorite intrusion.

Mineralization is primarily hosted in phyllites and other fine-grained banded metasediments, which are characterized by strong deformation, silica flooding and abundant sulphide minerals. There are no continuous marker horizons within the sedimentary stratigraphy. Conglomerates are rare and generally not mineralized. Throughout the Tassawini West area, granodiorite intrusive rocks (mainly carbonate-biotite schist) comprise up to ten percent of the total rock mass and appear to have been emplaced as both dikes and sills. These intrusive rocks display various degrees of deformation. Their geometry and emplacement have affected and disrupted individual mineralized zones.

Figure 6: Model of the Tassawini West and Mine Creek zones, showing stacked and en echelon sheets as well as south-westerly plunge; view towards the north.

The largest mineralized body at Tassawini West is TassW1 that encapsulates the bulk of the mineralization in this zone. The strike length of the TassW1 zone is 470 metres and remains open to the southwest. The average true width of the zone ranges from five to seventy-five metres, and the zone has been intersected down to 165 metres vertical depth. Mineralization is associated with a synformal structure that strikes at sixty degrees and dips steeply between sixty to seventy-five degrees in the centre to the northwest. The north limb of the structure flattens near surface and it is this area that was formerly referred to as Mine Creek. The south limb remains subvertical in some areas but also appears to flatten towards at the northern end.

The TassW2 grade shell encapsulates a zone of mineralization that hangs below the south limb of TassW1. It has a strike length of 200 metres and trends fifty-five degrees, dipping to the northwest at forty-five to fifty-five degrees. The bulk of the zone has a true thickness between three and ten metres. The mineralization extends to a depth of 200 metres below surface and remains open to the north, south and at depth.

The TassW3 grade shell is found in the centre of the antiform and possibly represents mineralization associated with a fold axis of the TassW1 zone. This is a thin zone of mineralization that has strike length of 130 metres, an azimuth

of sixty degrees with subvertical dip. It has an average true thickness of three metres and extends to a depth of eighty metres below the surface.

The TassW4 grade shell is a very small area of mineralization found to the north of the north limb of TassW1 at a depth of forty metres below surface and is defined by three diamond drill holes. This zone is approximately twenty metres in all directions in size and is rounded in shape.

The TassW5, TassW6 and TassW7 grade shells are found at the northern end of TassW1. Each of the zones strikes approximately fifty-five degrees and has a strike length of about 100 metres. The zones dip to the northwest at forty-five to sixty degrees and have true thicknesses that range between five to twenty metres thick. The zones extend from surface down to a depth of sixty metres.

The TassW8 grade shell is found in the northwest area of Tassawini West. It is generally flat lying found to rest below the mineralization in TassW1, and has a strike length of 152 metres and an azimuth of seventy degrees. It is 160 metres across the strike with an averaged true thickness of five metres. This zone is found between twenty and sixty metres below the surface and is open towards the south and northwest.

TassW9 is very small zone that has a strike length of fifty metres along seventy degrees azimuth with a true thickness of five metres and dips steeply at seventy degrees to the northwest. This zone extends from surface to a depth of twenty-five metres

8.3 Tassawini South

Mineralization is confined to a single zone within a series of highly deformed (steeply dipping, steeply plunging and isoclinally folded) metasediments, mainly black garnetiferous metamudstones that structurally over-lie a relatively massive and less deformed intrusive granodiorite body; the overall form of the envelope is thus flat and keel-like.

The grade shell that was modelled for the March 2007 resource estimation for Tassawini South has a strike length of 220 metres along sixty-five degrees azimuth and is approximately sixty metres wide. The true thickness of the zone is between fifteen to twenty-five metres thick and lies near surface and remains open for further exploration to the south.

8.4 Black Ridge

The mineralized envelopes are complex in shape, partly reflecting internal fold styles within the metasedimentary rock hosts, and partly due to disruptions caused by granodiorite intrusions, abrupt changes in plunge, and faulting. The model for the March 2007 resource estimation used nine separate mineralized envelopes to encapsulate the mineralization at Black Ridge. The stacked envelopes strike at 225 to 230, dip from forty-five to seventy degrees and plunges are interpreted to be towards the southwest up to forty-five degrees.

Host lithologies are most like those at Tassawini East. In fresh core they are quartz-invaded banded phyllite and proto-mudstone, again commonly highly garnetiferous (gondite), and in saprolite are limonite-goethite bands and manganese-rich bands that are believed derived from the garnetiferous mudstones. Also, as in Tassawini East, there are discontinuous conglomerate horizons and bands of carbon-rich carbonate-sulphide (pyrrhotite-dominated) iron formation.

The iron formation rocks are lithologically similar to those in Tassawini East but are more deformed. Although in places they do contain significant volumes of hydrothermal silica, again they are not significantly mineralized with respect to gold.

The gold mineralization occurs in spatial association with silica, pyrite and arsenopyrite in zones of silicification, carbonation and especially deformed micro-quartz and quartz-carbonate veining related to linear high strain zones, fold hinges and intrusive contacts. Many of the intrusive bodies also contain zones of metasedimentary rock assimilation and inclusions of country rock; whereas the granodiorite itself is not mineralized, these hybrid zones and zones of rafting (especially rafting of intensely deformed black carbonaceous metamudstone) are also within the mineralization envelopes.

The following comments have been made about the gold mineralization:

- Gold is in graphitic, sulphide-bearing, relatively reduced rocks, but commonly not included in the sulphide minerals themselves;
- It is in intensely deformed rocks and it is in veined rocks, but more likely to be in the country rock than in the quartz veins themselves;
- Most of the small scale quartz veins (including those containing gold) formed before or during the early stages of regional metamorphism and deformation;
- The gold is older than certain rock-forming minerals such as garnet, pyrrhotite, potassium feldspar, quartz, carbonate, chlorite and white mica;
- Where gold occurs in the matrix of the rock, its grain size is comparable to that of the surrounding silicate minerals; and
- Clusters of small gold inclusions observed in garnet, chlorite, sulphide and feldspar may be relicts of a larger grain or grains that were replaced by the surrounding silicate or sulphide. Alternatively, there is the possibility that some gold may be detrital grains of potassium feldspar-hosted gold mineralization.

8.5 Sonne

The timing for gold deposition is possibly a two-stage event such that: Gold occurs as inclusions in pyrrhotite, garnet, potassium feldspar, and chlorite-white mica aggregates in metasedimentary rock.

9 Exploration

Beginning from September, 2004, exploration activities carried out by StrataGold have including Diamond drilling, RC drilling, channel sampling (trench and wall sampling), geochemical soil sampling, structural mapping, surveying, geophysical, petrographical and metallurgical studies, as well as infrastructure development. Special emphasis was put on petrographical studies (Thompson, 2007a, b) since the lack of outcrop in the exploration area requires drilling and petrographical data for geological interpretation, which was deemed critical in understanding the geology of the deposit(s).

From a combined interpretation of drilling, geochemical and geophysical data, structural and petrographic studies, a target generation map (Figure 7), was compiled in order to prioritize target areas for the remainder of the 2007 and 2008 exploration programs.

Figure 7: A target generation map from a combined interpretation of drilling, geochemical and geophysical data, structural and petrographic studies.

10 Drilling

Diamond drilling at the Tassawini Project between 2005 and 2007 focused on drilling and expansion of the following gold zones:

- Tassawini West (including Mine Creek);
- Tassawini East;
- Tassawini South;
- Black Ridge;
- Sonne.

The amount of diamond drilling within the area of the March 2007 resource estimation has been a relatively minor part of the 2007 program, and has been mainly peripheral to the previous drilling. This drilling has had no negative material impact on the earlier resource estimation.

A light mobile RC air-compressor type drilling rig mounted on a Bobcat has been used at Tassawini since September 2004. Between 2004 and 2007, 1,279 holes have been drilled totalling 47,509 metres.

10.1 Downhole Surveying

Upon completion of the hole, the drill collars are staked with a wooden post and labelled with an aluminum tag. The drill collars were chained from the nearest known point to get a preliminary field location (generally accurate within 2.5 metres). Surveyors visit the site periodically to survey the collars of the drill holes and access roads used for the drilling. In 2005 and early 2006, the drill collars were surveyed using a Nikon NPL 300 Total Station and a differential GPS system by Maurice L. Heter. UnderHill Geomatics Ltd. ("Underhill") were contracted later to survey the drill hole collars and provide other survey control using Leica TCR405 and Geodimeter 540 Total Stations and differential GPS.

Drill hole orientations for all areas were based on predominant geological trends (strike and dip) known at the time of drilling; the attitudes were being reviewed as the program progressed in order to optimize the relationship between core angles and mineralization.

No down-hole surveys have been taken in the RC holes but the collar locations were surveyed in the same manner as the diamond drill hole collar locations.

10.2 Drilling Pattern and Density

A twenty-five by twenty-five metre drilling grid was deemed necessary to develop sufficient understanding of the geology and potential ore bodies to support a resource estimate for the deposits. Diamond drilling at Sonne during 2007 has been carried out on a fifty by fifty metre, or fifty by twenty-five metre star pattern.

11 Sampling Approach and Methodology

11.1 Core Sampling

Since 2006, core has been stored in moulded PVC trays that hold two metres of HQ core or three metres of NQ core. For the 2005 program, core was stored in 1.8 to three metre capacity corrugated plastic trays.

When core is received at the core shack in the Tassawini camp, core technicians use brushes and water to remove dirt and drilling additives from the core and core boxes. The core boxes are labelled with the core intervals, and the core recoveries and rock quality designation (RQD) are measured and recorded. A geologist logs the drill core and captures the depths of geological contacts and qualifies and quantifies the detailed geology, structures, alteration and mineralization.

Sample intervals are determined and tagged after geological logging, and core boxes are routinely digitally photographed at this stage. The whole length of the drill hole is typically sampled, always so in saprolite and highly weathered zones which can be very deceptive to geological interpretation. Figure 8 shows the core logging facilities in Tassawini.

Through 2005 and early in 2006, geological logging was performed on paper and later transcribed to Excel spreadsheets. Since April 2006, geological data have been logged directly into spreadsheets in the core shack without transcription.

Core recovery is typically good. In saprolite, recovery generally ranges from eighty to ninety percent, while the recovery is ninety-five to 100 percent in fresh rock. If a minimum recovery of eighty percent over any ten metre interval is not met in saprolite, the hole is re-drilled. Drill core samples are generally 1.5 metre in length as this size provides the best control of downhole distance as measured by drillers' blocks and the length of the HQ core barrel (the NQ core barrel is three metres long and thus samples can be measured equally from drillers' blocks).

Figure 8: Covered outdoor core logging facility; Tassawini exploration camp.

Figure 9: Covered outdoor core cutting facility, Tassawini exploration camp.

However, the geologist logging the core determines individual sample intervals in order to ensure that samples start and terminate at logical geological boundaries determined by lithological, structural, alteration or mineralogical contacts where at all possible. An average 1.5 metre sample length is also considered appropriate for subsequent geostatistical analysis given the scale of the deposits and future possible mining methods. Applying a regular sample interval, wherever possible, also ensures that subsequent geostatistical treatment of the data remains valid. The drill core is split by trained technicians along the core axis, perpendicular to bedding, foliation, and/or veining in order to produce a representative sample of each designated sample interval. Figure 9 shows the core cutting facilities at Tassawini

If the drill core is broken, individual pieces are split in half. Quantification of natural sample bias is also addressed by the analysis of field duplicates (two in 100 samples). The sample bags are sealed and put into plastic pails for shipment with appropriate chain of custody documentation to either ALS-Chemex ("Chemex") in Canada, or for sample preparation to Georgetown, Guyana where Acme Labs of Canada have set up a sample preparation facility. The remaining half of the sampled core is then stored on site in covered wooden core racks.

11.2 Reverse Circulation

During RC drilling, one large two by three foot plastic bag is used to collect one sample from each five foot (1.52 metre) drill rod or sampling run. The sample bags are labeled with a predetermined sequence of sample numbers prior to the commencement of drilling each hole. A permanent black marker is used to write the sample and drill hole number on the outside of the each bag and on a piece of flagging tape that is inserted in the bag immediately after the sample is collected.

The drill hole and lines are blown out with compressed air to clean the entire system between each sample in order to keep contamination to a minimum. The cyclone is also visually inspected and cleaned after each sample is collected.

RC drill samples consist of dry saprolite sampled at five foot (1.52 metre) intervals until water or the bedrock interface is reached. If water is encountered during the drilling process, the hole is terminated and the wet sample is discarded. RC samples average about twelve to fifteen kilograms, but can range between eight and twenty kilograms depending on rock type and recovery. Sample bags are tied with rope or sealed with duct tape.

11.3 Channel sampling

There are virtually no natural occurring outcrops within the property due to deep tropical weathering of the bedrock to saprolite and a thick vegetation cover. StrataGold therefore has taken advantage of drill pad sites, road cuts, excavated trenches and historic open cuts that have been dug into the sides of

hills to acquire channel samples, generally in saprolite, throughout the property.

Before channel samples are taken, the area to be sampled is scraped clean and smoothed manually. Each sample is taken using the flat end of a 2.5 pound garden pick mattock; a channel is typically 2.5 centimetres deep, five centimetres wide and one to two metres long. A sample bag is held immediately below the channel to catch the sample. The resulting samples typically weigh one to two kilograms. The sample bags are then assigned sample numbers, sealed and sent directly to either Acme Labs Guyana Inc. ("Acme") or Loring Laboratories Guyana Ltd. ("Loring"); both are located in Georgetown, Guyana where the samples are analyzed for gold by fire assay method with AAS finish (FA-AAS).

11.4 Geochemical soil sampling

An extensive soil sampling program was undertaken at Anaturi PL and in the northern part of Tassawini PL in 2006. A total of 9,167 soil samples, classified as residual soils, were collected and analyzed, initially on a 200 metre by twenty-five metre grid (approx 265 line kilometres) with 100 metre by twenty-five metre infill sampling in anomalous areas (110 line kilometres).

The soil samples were collected using one metre long hand augers. The regolith horizon sampled was immediately below the organic soil cover. The sample material was homogenized and one kilogram aliquot was packed in plastic bags. The samples were classified according to its color and type. Samples identified as alluvial material were rejected, and one control sample (either a duplicate, blank and standard) was added routinely to every twenty samples. Samples were submitted for analysis to either Loring Labs (a non-certified lab) or Acme Labs in Georgetown, along with appropriate internal QA/QC controls, as in the case of StrataGold's regular sampling and assaying protocols.

12 Sample Preparation, Analyses and Security

12.1 Sample Preparation and Analysis

12.1.1 Diamond Drill Core samples

Until the third quarter of 2006, sample pulps were prepared at ALS Chemex in Canada by laboratory personnel. ALS Chemex is ISO 9000 registered. In late 2006, Acme Labs set up a facility in Georgetown, Guyana for sample preparation; once this facility was operational, sample pulps were shipped to Acme's assaying facility in Santiago, Chile. Acme Laboratories are ISO 9000 certified. The preparation procedures for the samples and duplicates and standard insertions have been modified through the drilling programs at Tassawini. However, no aspect of the diamond drilling sample preparation process was conducted by an employee, officer, director or associate of StrataGold.

The following procedures have remained consistent for all diamond drill samples. The whole sample is crushed to ninety-five percent passing two millimetres, after which 250 grams are riffle split and pulverized to ninety-five percent passing seventy-five micrometres (approximately 200 mesh). A thirty gram aliquot is then analyzed using fire assay method with an atomic absorption (AA) finish for each sample. Another subsample was submitted for multi-element ICP analysis and results were obtained for the following elements; Ag, Al, As, B, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, Ga, Hg, K, La, Mg, Mn, Mo, Na, Ni, P, Pb, S, Sb, Sc, Sr, Ti, Tl, U, V, W and Zn (ALS labs) or Ag, Al, As, B, Ba, Bi, Ca, Cd, Co, Cr, Cu, Fe, Hg, K, La, Mg, Mn, Mo, Na, Ni, P, Pb, Sb, Sr, Th, Ti, Tl, U, V, W and Zn (Acme Labs).

12.1.2 Reverse Circulation

Until the third quarter of 2006, sample pulps were prepared at ALS Chemex in Canada by laboratory personnel. In late 2006, Acme set up a sample preparation facility in Georgetown, Guyana; once it became operational pulped samples were shipped to Acme's assaying facility in Santiago, Chile.

The following sample preparation procedures have been in place for RC drill samples. The whole sample is crushed to ninety-five percent passing two millimetres, and then 250 grams are riffle split and pulverized to ninety-five percent passing 75 micrometres (approximately 200 mesh). A thirty gram aliquot is analyzed using fire assay method with an atomic absorption (AA) finish for each sample. Another subsample was submitted for multi-element ICP analysis and results were obtained for the following elements; Ag, Al, As, B, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, Ga, Hg, K, La, Mg, Mn, Mo, Na, Ni, P, Pb, S, Sb, Sc, Sr, Ti, Tl, U, V, W and Zn (ALS labs) or Ag, Al, As, B, Ba, Bi,

Ca, Cd, Co, Cr, Cu, Fe, Hg, K, La, Mg, Mn, Mo, Na, Ni, P, Pb, Sb, Sr, Th, Ti, Tl, U, V, W and Zn (ACME Labs).

12.2 Quality Assurance and Quality Control Programs

Quality control measures are typically set in place to ensure the reliability and trustworthiness of exploration data. This includes written field procedures and independent verifications of aspects such as drilling, surveying, sampling and assaying, data management and database integrity. Appropriate documentation of quality control measures and regular analysis of quality control data are important as a safeguard for project data and form the basis for the quality assurance program implemented during exploration.

Analytical control measures typically involve internal and external laboratory control measures implemented to monitor the precision and accuracy of the sampling, preparation and assaying. They are also important to prevent sample mix-up and monitor the voluntary or inadvertent contamination of samples. Assaying protocols typically involve regular duplicate and replicate assays and insertion of quality control samples to monitor the reliability of assaying results throughout the sampling and assaying process. Check assaying is typically performed as an additional reliability test of assaying results. This typically involves re-assaying a set number of sample rejects and pulps at a secondary umpire laboratory.

StrataGold's quality control program and its results up to 2007 are well documented in a technical report prepared by LGGC in 2007 (Lomas, 2007). During the site visit in November 2007 SRK confirmed that the quality control and assurance procedures were still in place and being followed by StrataGold staff.

During drilling StrataGold implemented routine verifications to ensure the collection of reliable exploration data. In the opinion of SRK, the field procedures used by StrataGold meet or exceed industry best practices. Sample shipments and assay deliveries were routinely monitored as produced by the preparation and assaying laboratories. Assay results and quality control data produced by StrataGold were inspected visually and analyzed using various bias and precision charts

Between 2005 and 2007 StrataGold used a number of different standards that were purchased from Analytical Solutions Ltd. in Toronto. For two of those SRM the expected value and / or the accepted standard deviation were unavailable to SRK. White, umineralized sand was used as blank material and was routinely inserted into the sample stream.

12.2.3 Twin Hole Drilling

In order to test the reliability of assay data obtained from reverse circulation drilling, StrataGold drilled a number of diamond holes twinned to reverse circulation holes. While some data scatter is expected due to nugget effects and the small distance between the diamond and reverse circulation hole, results are generally in good agreement (Figure 10), indicating that the use of assays

Page 35

obtained from reverse circulation drilling is permissive for resource calculation purposes.

12.2.4 Diamond Drill Core samples

Quality control samples including standard reference material (SRM), blanks and core duplicates were inserted into the sample stream before the samples were sent to the lab. The core duplicates were taken using the remaining half of the core so for some segments of core there is no remaining sample in the core boxes. This approach is the ideal procedure for core duplicates as the two samples have the same support (1/2 core samples).

During the 2005 and 2006 sampling programs, the SRMs, blanks and core duplicates were inserted into the sample stream using sample number markers. The blanks were inserted where sample numbers ended in 00, SRMs where samples ended in twenty and sixty and core duplicates where samples ended in the numbers forty and eighty. The core duplicate samples were separated in the sample stream and not processed or assayed in a consecutive sequence.

StrataGold revised the system in late 2006 to randomize the placement of the QA/QC samples, give duplicate samples sequential numbers and include preparation duplicates to test the quality of the initial crush. For every batch of one hundred samples, StrataGold inserts three SRMs, two blanks, two core duplicates and four preparation duplicates.

The QA/QC program, sampling methodology and chain of custody protocols were discussed and analyzed in detail in the NI 43-101 Technical Report filed on SEDAR on May 17th, 2007 (Lomas, 2007). QA/QC analysis for the 2007 drilling showed that the laboratory assays are reasonable and passed QA/QC.

During the site visit in November 2007 SRK confirmed that these procedures are still in place and being followed.

Between 2005 and the end of 2007, StrataGold submitted a total of 31,765 samples to assay labs. In the same time frame 716 standards, 441 blanks, and 652 duplicate samples were submitted (Table 1). During assaying a small number of standards failed; in these cases the entire batch was sent for reassay. In a limited number of cases this step was omitted only when all samples proved to be unmineralized and in waste. Quality control plots can be found in Appendix A.

Table 1: Summary of Analytical Quality Control Data Produced by StrataGold on the Tassawini Gold Project.

SRM	No. SRM DDH Chemex	No. SRM DDH ACME Labs	No SRM RC	Target Value (Au g/t)	- 2 StdDev	+ 2 StdDev
7Pb		49	35	2.77	2.66	2.88
15Pa		39	49	0.96	1.07	.94
15Pc		23	43	1.51	1.70	1.46
18Pa		14	3	3.39	3.16	3.57
50Pb		18	11	0.84	0.78	0.90
51P	117	20	41	0.43	0.38	0.48
52Pb		44	47	0.31	No c	lata available
53P		10			No c	lata available
53Pb		16	22	0.58	0.67	0.56
60P	157	39	49	2.60	2.46	2.73
61Pa	47	59	65	4.46	4.20	4.73
61Pb	54	10	41	4.75	4.49	5.01

12.2.5 Reverse Circulation samples

Quality assurance and quality control (QA/QC) samples including standard reference material (SRM), blanks and split duplicates were inserted into the sample stream before the samples were sent to the lab. The split duplicates were taken using a second one kilogram split of the homogenized drill sample.

During the 2004, 2005, and 2006 RC sampling programs, StrataGold inserted five quality control samples into the sample stream for every one hundred RC drill samples. The blanks were inserted where sample numbers ended in 00, SRMs where samples ended in twenty and sixty and split duplicates where samples ended in the numbers forty and eighty.

StrataGold revised the system in late 2006 in order to better check the accuracy and precision of the ACME sample preparation facility in Georgetown, and doubled the number of QA/QC samples inserted into the RC drill sample stream. For every batch of one hundred RC drill samples, StrataGold inserted three SRMs, four blanks, and three split duplicates.

Between 2005 and the end of 2007, StrataGold submitted 27,007 samples to assay labs. In the same time frame 406 standards, 410 blanks, and 398 duplicate samples were submitted (Table 1). During assaying a small number of standards failed; in these cases the entire batch was sent for reassay. In a limited number of cases this step was omitted only when all samples proved to be unmineralized and in waste. Quality contol plots can be found in Appendix A.

While a very limited number of quality control issues remain, SRK is of the opinion that the assay data are generally reliable and hence can be used in this resource calculation.

12.3 Specific Gravity Data

For bulk density determinations at the Tasawini Project samples with the following characteristics were selected for all major geological facies and zones:. Preserved drill core that was sawn or split in half with an average length of forteen centimetres from individual samples 1.5 metres in length. For each sample, the rock type, weathering zone and exact location was known.

One of the following procedures were applied in determining the density of samples: Measured core volume (caliper) and the volume displacement method. The former was used routinely, while the latter was used to cross check on some selected samples Each of the methods has certain advantages and limitations, hence the need to use the two to check the results from one method against the other.

12.3.6 Measured Core Volume (Caliper) Method

Calipers were used to determine the length (L) and diameter (D) of each sample. In the case of split core, care was taken to select samples that were split into equal halves to avoid over- or underestimating the weight and volume of the sample. The core was then weighed at room temperature to obtain the mass (M).

The density was determined according to the following equation:

Density (ρ) = (Mass)/(Volume), where V= π (D/2) 2 L

This method is widely used in the industry, an example can be found at North Hope in Western Australia where Collings et al. (2001) used it in the modelling of the deposit.

12.3.7 Volume Displacement Method

This method measures the volume of a sample by the weight of water it displaces since one cubic centimetre of water weights one gram. For each measurement a bucket was filled with water from a displacement hose until it overlowed.When water was no longer dripping from the hose, a sample with a thin saran wrap to avoid ingress of water was carefully immersed in the water. The water was then allowed to drain out through the displacement hose into a cylinder. The weight of the water was measured taken into consideration the weight of the cylinder to obtain the weight of water displaced in grams A measuring cylinder was also utilized to cross-check the volume of drained water with the weight of water dripped from the hose.

12.3.8 Percent Water Content

To estimate moisture content, each sample was then wrapped in aluminium foil and was weighed in air and then each sample was dried (100 to 110 degrees Celcius for ten to twelve hours) and then reweighed to determine the dry weight with the foil. The calculation included the wet weight of the sample in foil less the dry weight of the sample in foil, less the weight of the foil. The moisture content was determined by dividing the wet weight of the sample by the weight of the water in the sample and multiplying this figure by 100 to determine the percentage.

For quality control purposes a number of samples were submitted to Acme labs for density determinations Figure 11.

13 Data Verification

Data verification is carried out at site on a constant basis by peer review and checking. This process has been the subject of the independent review by LGGC in 2006, and is currently under further review by SRK. StrataGold geologists logged onto paper sheets for most of the 2005 drill holes. In early 2006, the geologists logged the drill core information directly into laptop computers in the core shack. This technique eliminated any paper trail for most of the DD data starting in 2006.

After scrutinizing assay certificates for the control sample assays, sample assays are merged into the Tassawini Project database by matching the sample numbers of the interval data and the analytical results. This task is carried out using conditional formatting in a spreadsheet to flag any errors in data entry or typography. Sample assays below detection limits are reduced to half the detection limit. Those above the assay detection limit are recorded as "the detection limit value plus 1". For duplicates or second determinations, the first assay is the one routinely loaded into the database. No averaging of assays is done.

14 Adjacent Properties

There are no adjacent properties that are relevant for the purpose of this technical report.

15 Mineral Processing and Metallurgical Testing

Metallurgical test work of composited samples from Tassawini was conducted on drill core samples of gold-mineralized material in 2006. Regolith types that were evaluated included saprolite, transitional and unweathered (fresh rock), and these were taken from three mineralized zones, namely, Tassawini East, Tassawini West, and Black Ridge. These samples were representative of the bulk of the mineralization at Tassawini. The work was carried out by SGS Lakefield Research Limited under the supervision of StrataGold's metallurgical consultant and Pincock Allan & Holt ("PAH").

The test work on all composites included direct cyanidation, CIL tests, grinding tests, a screen metallic's coarse gold evaluation and gravity separation followed by flotation. The saprolite ore composites were also tested to evaluate gravity separation followed by cyanidation of the saprolite gravity tailing. The gold head grade analyses for the composites generally ranged from 1.0 to 1.6 grams per tonne except for the Tassawini East fresh rock composites which had a higher average gold grade of six grams per tonne. Some of the composites exhibited analytical head grade variations common to ores containing coarse gold.

Gold extractions by CIL treatment of the saprolite composites zones averaged ninety-five percent and ranged from eighty-nine percent to ninety-seven percent on different samples. Treatment of the saprolite composites by removal of a separate gold gravity concentrate and then direct cyanide leaching of the gravity tailing improved the average overall saprolite gold recoveries by another 2.5 percent and reduced the cyanide consumption values for these ores.

The transition composites produced lower CIL gold extractions ranging from seventy-three percent to ninety-one percent, while the fresh rock composite indicated CIL gold extractions ranging from around seventy-eight percent to ninety-three percent. Generally, better gold extractions were derived with finer grinding of the samples. Some scatter found in the leaching gold recovery data may be also have been due to variability resulting from coarse gold in the head samples. Cyanide consumption during CIL leaching was reasonable, averaging around 0.5 to 0.6 kilograms per tonne.

Recovery of a gravity gold concentrate from the three transition composites followed by gold flotation from the gravity tailing at a medium grind condition, resulted in overall gold recoveries ranging from eighty-three percent to ninety-five percent. The flotation concentrates represented twelve to fifteen percent of the original ore weight, and remain to be tested to evaluate cyanidation of the contained gold values.

The Black Ridge fresh rock composite, tested by the gravity-flotation procedure, produced an overall gold recovery of eighty-nine percent, typical of the other transition composite sample results.

16 Mineral Resource and Mineral Reserve Estimates

16.1 Introduction

The mineral resource model presented herein represents a revised resource evaluation for the Tassawini and Sonne gold deposits. The revised mineral resource models were prepared to provide an assessment of gold zones delineated by drilling on this project and to provide StrataGold management an independent assessment to justify additional exploration and development work.

The resource estimate was completed by Dr. Lucy Roberts an independent Resource Geologist under the supervision of G. David Keller, P.Geo an independent qualified person as this term is defined in National Instrument 43-101. The effective date of this resource estimate is June 10, 2008.

This section describes the work undertaken by SRK and summarizes the key assumptions and parameters used to prepare the revised mineral resource models.

In the opinion of SRK, the block model resource estimates and resource classification reported herein are a reasonable representation of the global gold mineral resources found in the Tassawini and Sonne gold deposits at the current level of sampling. The mineral resources presented herein are reported in accordance with Canadian Securities Administrators' National Instrument 43-101 and have been estimated in conformity with generally accepted CIM "Estimation of Mineral Resource and Mineral Reserves Best Practices" guidelines. Mineral resources are not mineral reserves and do not have demonstrated economic viability. There is no certainty that all or any part of the mineral resource will be converted into mineral reserves. Mineral reserves can only be estimated as a result of an economic evaluation as part of a preliminary feasibility study or a feasibility study of a mineral project. Accordingly, at the present level of development there are no mineral reserves on the Tassawini project.

16.2 Database Construction and Validation

Raw assay data have been compiled by StrataGold personnel on site and stored in Microsoft Excel databases, and in Gemcom GEMS mining software. Separate tables were compiled for assay data, geological data, drillhole location and survey information. In addition, details of structural data and density measurements for individual samples have been collated. SRK received data collected until November 2007. A database structure, based on the presented data tables, was constructed within the GEMS mining software package. The construction of a relational database allows for rapid checking and validation of interval data. In particular, it is possible to rapidly check the physical location of boreholes against survey and topographic maps. The database also allows checks for sample duplication and sample overlaps to be carried out.

16.3 Density Data

StrataGold has undertaken a detailed dry density analysis for stored core samples. Samples collection was carefully supervised by StrataGold geologists and care was taken to ensure the samples taken were representative of the geological facies / zone. Samples were taken from the stored drill cores, and either sawn or split in half. The pieces of core taken averaged fourteen centimetres in length, and were considered by StrataGold to be representative of the 1.5 metre assay sample intervals. A total of 495 measurements were taken from the three oxidization zones. The number of samples taken, and the average densities applied to the resource model are included in Table 2.

Density measurements were taken using a measured core volume (calliper) method, and cross checked using a volume displacement method. The volume displacement method was used as a cross check as the saprolite samples would often break up when immersed in water, even when carefully wrapped in plastic. Results from the two methods were then compared to ensure that the resultant density values were not biased.

All density measurements were taken on Tassawini core; hence, SRK extrapolated the saprolite density value into the Sonne region.

Domain	Mineralized Zone	No Samples	Dry Density Value
Tassawini	Saprolite	227	1.90
	Weathered	112	2.44
	Fresh	156	2.74

Table 2: Density Values for Tassawini by Oxidation State

16.4 Solid Body Modelling

Gold wireframes were constructed to constrain geostatistical analysis and grade estimation using a 0.2 gram per tonne gold cut-off. This cut-off values is reasonable considering the cut-offs of similar projects based on realistic mining and processing costs. Initial wireframes were provided by StrataGold and were modified by SRK by incorporating more recent drill hole data.

From the drilling data, twenty-seven separate mineralization wireframes were modelled and treated as independent domains, separated by hard boundaries for resource estimation. The Tassawini deposit is dub-divided into the Tassawini East, Tassawini West, Tassawini South, Mine Creek, and Black Ridge domains. Each domain consists of three to eight individual solids. The Sonne deposit is sub-divided into four zones. Once these initial wireframes were constructed, they were cut according to the weathering profile into saprolite, weathered (saprock) and fresh zones. Due to the limited diamond drill hole data for Sonne, only saprolite wireframes were constructed for this deposit.

16.5 Block Model

Wireframe solids for each of the domains were used to generate block models for each domain. Separate block models were produced for each of the Tassawini and Sonne areas. Block models were not rotated as the changes in strike direction through the Tassawini model, and the application of square blocks in plan view made block rotation unnecessary. Block sizes were chosen to reflect the average spacing of drill lines along the strike.

Block model parameters for Tassawini are summarised in Table 3.

Zone	Coordinate	Origin	Block Size	No. of Blocks
Tassawini	Х	214,000	15	150
	Y	831,000	15	150
	Z	200	10	75
Sonne	Х	212,500	15	225
	Y	830,475	15	225
	Z	200	10	75

 Table 3: Block Model Parameters.

16.6 Statistical Analysis

The basic population statistics of the sample assays for each of the mineralized areas within the project area are summarized below. The total metres of drill core utilised in the resource estimate is detailed in Appendix B, while the distribution of drill holes and drill hole types are shown in Figure 12. The statistics are based on composited assay values within the wireframes described previously; the data were composited to two metre lengths within the mineralized zones, and composites of less than 1.50 metres were removed. The composites removed from the database are detailed in Table 4. The mean sample length in the database is 1.59 metres, with the majority of samples being between one and two metres in length. The statistics presented here are based on all drilling data that intersect the wireframes.

Domain	Number of Composites Removed	Mean Grade (g/t) of Composites Removed	Total Number of Composites in Domain
Tassawini East	154	1.43	1,834
Tassawini South	87	0.58	851
Tassawini West	439	0.52	4,362
Mine Creek	69	0.50	494
Black Ridge	268	0.57	2,340
Sonne Zone 100	61	0.50	912
Sonne Zone 200	86	0.63	747
Sonne Zone 300	23	0.45	235
Sonne Zone 400	292	0.37	3,483

Table 4: Short Composites (Less	than 1.5 metres)	Removed From
Database.		

For both Tassawini and Sonne, the composites inside the modelled bodies were split also into oxidization states. Because there was little information for the transition zone, SRK has combined the three oxidization states and used the combined datasets throughout.

Figure 12: Distribution of drill holes and drill hole type for the Tassawini and Sonne areas.

16.6.9 Statistical Analysis – Tassawini

Each of the individually modelled lenses within the five areas that make up the Tassawini area (Tassawini East, South and West, Mine Creek and Black Ridge) was assessed independently, as well as being combined into a global dataset. All of the statistical distributions for each of the individually modelled bodies are relatively similar, being neither normal nor lognormal, with the possibility of mixed populations in the majority of cases. In some cases, the distributions do approach lognormality. The summary statistics for each of the modelled domains are illustrated in Table 5 and Figure 13 to Figure 17. For all datasets, zero values were checked in the database and were set to 0.001 g/t.

16.6.10 Statistical Analysis – Sonne

Statistical analysis was undertaken for the four modelled zones in Sonne (Sonne Zones 100, 200, 300 and 400). The descriptive statistics for each are included in Table 10 to Table 13 and the raw and log histograms in Figure 18 to Figure 21. All of the statistical distributions for each of the individual modelled bodies are relatively similar, being neither normal nor lognormal, with the possibility of mixed populations in the majority of cases.

Tassawini East.

Statistic	Value - Au	Value – LN Au
Mean	1.090	-1.03
Median	0.390	-0.94
Mode	0.010	-4.61
Minimum	0.001	-6.91
Maximum	337.510	5.82
Standard Deviation	8.530	1.38
Sample Variance	72.780	1.91
Count	1,680.000	1,680.00
Coefficient of Variation	7.860	-1.34

Table 5: Summary Statistics for Composited Gold Grades in

S № N N

Figure 13: Tassawini East - Grade Histograms.

-

Statistic	Value - Au	Value – LN Au
Mean	1.030	-0.80
Median	0.450	-0.79
Mode	0.010	-4.61
Minimum	0.001	-6.91
Maximum	32.690	3.49
Standard Deviation	2.160	1.35
Sample Variance	4.660	1.83
Count	764.000	764.00
Coefficient of Variation	2.100	-1.70

 Table 7: Summary Statistics for Composited Gold Grades in

 Tassawini South

Figure 14: Tassawini South - Grade Histograms

Tassawini West

Statistic	Value - Au	Value – LN Au
Mean	1.180	-0.81
Median	0.470	-0.76
Mode	0.001	-6.91
Minimum	0.001	-6.91
Maximum	190.430	5.25
Standard Deviation	4.550	1.43
Sample Variance	20.700	2.05
Count	3,923.000	3,923.00
Coefficient of Variation	3.840	-1.76

Table 8: Summary Statistics for Composited Gold Grades in

AU Nb Samples: 3923 100 Minimum: 0.00 Maximum: 190.43 Mean: 1.18 0.7 Std. Dev.: 4.55 0.6 0.6 0.5 0.5 Frequencies Frequencies 0.4 0.4 0.3 0.3 0.2 0.2 0.1 0.1 0.0 0.0 100 200 0 AU LN Au Nb Samples: 3923 0 -6.91 Minimum: Maximum: 5.25 0.08 -0.81 Mean: Std. Dev.: 1.43 0.07 0.06 0.06 Frequencies Frequencies 0.05 0.05 0.04 0.04 0.03 0.03 0.02 0.02 0.01 0.01 0.00 0.00 0 5 - 5 LN Au

Figure 15: Tassawini West - Grade Histograms

Table 9: Summary statistics for Composited Gold Grades in Mine Creek

Statistic	Value - Au	Value - LN Au
Mean	0.85	-0.96
Median	0.40	-0.90
Mode	0.01	-4.61
Minimum	0.01	-5.30
Maximum	10.04	2.31
Standard Deviation	1.16	1.39
Sample Variance	1.34	1.93
Count	425.00	425.00
Coefficient of Variation	1.37	-1.45

Figure 16: Mine Creek Grade Histograms

Statistic	Value - Au	Value – LN Au
Mean	0.800	-1.09
Median	0.400	-0.92
Mode	0.020	-3.91
Minimum	0.001	-6.91
Maximum	47.810	3.87
Standard Deviation	2.070	1.38
Sample Variance	4.280	1.91
Count	2072.000	2072.00
Coefficient of Variation	2.570	-1.27

Table 10: Summary Statistics for Composited Gold Grades inBlack Ridge

Figure 17: Black Ridge Grade Histograms

Table 10: Summary statistics for composited gold grades in Zone 100.

Statistic	Value - Au	Value – LN Au
Mean	0.460	-1.46
Median	0.280	-1.28
Mode	0.001	-6.91
Minimum	0.001	-6.91
Maximum	10.220	2.32
Standard Deviation	0.600	1.37
Sample Variance	0.360	1.86
Count	851.000	851.00
Coefficient of Variation	1.320	-0.93

Figure 18: Zone 100 Grade Histograms

Table 12: Summary statistics for composited gold grades in Zone200

Statistics	Value - Au	Value – LN Au
Mean	0.440	-1.49
Median	0.280	-1.29
Mode	0.001	-6.91
Minimum	0.001	-6.91
Maximum	10.880	2.39
Standard Deviation	0.650	1.31
Sample Variance	0.420	1.73
Count	661.000	661.00
Coefficient of Variation	1.460	-0.89

Figure 19: Zone 200 Grade Histograms

Table 13: Summary Statistics for Composited Gold Grades in Zone300

Statistic	Value - Au	Value – LN Au
Mean	0.34	-1.69
Median	0.20	-1.63
Mode	n/a	n/a
Minimum	0.01	-4.87
Maximum	3.17	1.15
Standard Deviation	0.44	1.16
Sample Variance	0.20	1.34
Count	212.00	212.00
Coefficient of Variation	1.30	-0.69

Table 13: Summary statistics for composited gold grades in Zone400

Statistic	Value - Au	Value – LN Au
Mean	0.400	-1.41
Median	0.270	-1.31
Mode	0.001	-6.91
Minimum	0.001	-6.91
Maximum	5.640	1.73
Standard Deviation	0.460	1.11
Sample Variance	0.210	1.23
Count	2979.000	2979.00
Coefficient of Variation	1.140	-0.79

Figure 21: Zone 400 Grade Histograms
16.7 Semi-Variogram Analysis

16.7.11 Variograms – Tassawini

Separate variography was attempted for each of the individually modelled lenses. However, this approach proved unsuccessful, and the data were combined into global datasets for each of the areas, namely Tassawini East, Tassawini West, Tassawini South, Mine Creek and Black Ridge. Similar to the statistical analyses, splitting the datasets into oxidization states resulted in too few data; therefore, SRK has combined the data for individually modelled lenses. Raw variography did not produce variograms of sufficient clarity to be modelled; hence, pair-wise variography needed to be undertaken. Calculating pair-wise variograms has the effect of reducing the proportional effect on the variogram through removing small scale variations within the individual sample pairs by dividing the square of the differences of each pair by the square of the mean of the two values, through adjusting each sample pair. Pairwise variograms produce a clearer representation of the spatial continuity of the dataset, reducing the inherent variability in the variogram, but still reflecting the variation across the mineralized zone.

The first stage was to define the nugget effect from a short-lag omnidirectional variogram, and then to model the variogram ranges from directional variograms from along strike, down-dip and across dip directions. Omnidirectional variograms were used because they have a downhole componant, and provide a slightly clearer view of any secondary structures compared to pure downhole variograms with similar lag distances. Variograms were unable to be determined for the individually modelled zones; hence, all of the data were combined to derive directional variograms that were subsequently used to model the individual zones separately. Variograms produced for each zone are presented in Appendix D, the variogram parameters derived from the modelled variograms are summarized in Table 15.

Doromotor	Tassawini	Tassawini	Tassawini	Black	Mine
Farameter	East	South	West	Ridge	Creek
Со	0.19	0.22	0.19	0.19	0.21
C ₁	0.32	0.47	0.26	0.28	0.35
C ₂	0.23		0.22	0.24	0.21
C ₃			0.09		
Nugget Effect (%)	25.68	31.88	25.00	26.76	27.27
a₁ (strike)	4	20	5	5	14
a₁ (dip)	8	12	8	15	12
a₁ (x-dip)	1	10	9	5	7.75
a ₂ (strike)	50		20	23	35
a ₂ (dip)	45		25	37	25
a ₂ (x-dip)	20		18	30	20
a₃ (strike)			70		
a₃ (dip)			60		
a ₃ (x-dip)			18		

Table 15: Modelled Variogram Parameters for all MineralizedZones.

16.7.12 Variograms – Sonne

Only omnidirectional, pair-wise variograms could be modelled for the separate areas. The variograms produced for each zone are illustrated in Appendix D, and the variogram parameters derived from the modelled variograms are listed in Table 16.

Table 16: Modelled Variogram Parameters for all MineralizedZones.

Parameter	Zone 100	Zone 200	Zone 300	Zone 400
Со	0.36	0.5	0.42	0.26
C1	0.315	0.22	0.12	0.21
C2	0.1	-	0.16	0.14
Nugget Effect (%)	46.45	69.44	60.00	42.62
a1	13	13	13	12.5
a2	84	-	56	47

16.8 Grade Capping

High grade capping was applied to some of the mineralized zones in the Tassawini Project Area, where extreme value grades occurred randomly rather than being a high grade feature, as indicated by Table 17. The effects of capping were also reviewed by running estimates with both the cut and un-cut datasets, and determining how the global grades differed. The high grade caps were determined on the basis of the shape of the tail of the log histogram and the log probability plots. Capping reduces the extreme values to a nominated capped value; which affects mean grades of the two metre composites, as indicated by Table 17. In the majority of cases, high grades within the capped datasets are also accounted for in the Kriging process, which requires a minimum number of grades to estimate a block value. This dependence reduces the impact of individual high grades influencing the block value.

No high grade capping was applied in Sonne, as no extreme value grades were intersected. The highest grade composite in Sonne is 10.88 g/t, which is considered to fall within the main grade distribution.

Mineralized Zone	Сар	No. of Cut	Uncut	Composite Mean	%
	(g/t)	Composites	Composite Mean	After Cutting	Difference
Tassawini East	50	1	1.09	0.91	16.5
Tassawini West	30	6	1.18	1.09	7.62

Table 17: High Grade Cuts Applied To the Composited Data

16.9 Grade Interpolation

Grade data for each of the modelled structures were interpolated within each individual wireframe solid. Soft boundaries between oxidization states were applied and subsequently reported separately as saprolite, weathered, or fresh. Grade estimates for each of the mineralized zones were calculated using ordinary kriging in all cases. The pairwise variograms were rescaled to the overall grade variance by Isatis prior to kriging. Kriging was carried out in three passes for each mineralized zone; the search parameters for the individual zones in Tassawini are included in Table 20 and in Table 21 for Sonne. Dimensions of the discretisation grid were chosen to be three by three by two metres in all cases. The two metre discretisation grid is in the zdimension, which coincides with the fifteen by fifteen by ten metre block size. A limit was placed on the search ellipsoid, in which a minimum of two angular sectors were needed to contain data in order for the block to be estimated. This technique reduces the number of blocks that are estimated from a single drill hole. The search ellipsoids are relatively large compared to the variogram ranges, but because data density is fairly high, the blocks were usually estimated with data significantly closer than the edges of the ellipsoid.

16.10Estimate Validation

16.10.13 Mean Block Grade versus Declustered Composite Mean Grade

The block models were validated in two ways; through comparing the block model mean grades with the declustered composite mean grades and through validation slices through the block models.

The mean grades for each of the estimated block models were compared to the declustered mean grade for the composite input data. Each of the modelled zones was compared separately; the details for Tassawini are shown in Table 18, and for Sonne in Table 19. The differences between the declustered mean composite grades and the block grades are relatively small, indicating that the model is similar to the input data on a global scale.

Aroa	Modelled	Mean Block	Declustered Mean	Difference
Alea	Solid	Grade	Composite Grade	(g/t)
Tassawini East	T100	1.59	1.19	-0.40
	T105	0.53	0.40	-0.13
	T110	0.74	0.73	-0.01
Tassawini West	T200	0.48	0.44	-0.04
	T205	1.13	0.89	-0.24
	T210	1.10	1.15	0.05
	T215	0.95	0.80	-0.15
Tassawini South	T300	0.90	0.97	0.07
	T305	0.46	0.38	-0.08
	T310	1.07	1.04	-0.03
	T315	0.31	0.33	0.02
Mine Creek	M400	0.62	0.69	0.07
	M405	0.40	0.36	-0.04
	M410	0.83	0.90	0.07
	M415	0.89	0.87	-0.02
Black Ridge	B500	0.64	0.81	0.17
	B505	0.36	0.37	0.01
	B510	0.54	0.43	-0.11
	B515	0.74	0.71	-0.03
	B520	0.85	0.87	0.02
	B530	1.00	0.81	-0.19
	B535	0.76	0.84	0.08
	B550	0.53	0.51	-0.02

Table 18: Tassawini Block Mean Grade Comparison.

Table 19: Sonne Block Mean Grade Comparison

Area	Modelled Solid	Mean Block Grade	Declustered Mean Composite Grade	Difference (g/t)
Sonne	Zone 100	0.46	0.45	-0.01
	Zone 200	0.46	0.48	0.02
	Zone 300	0.36	0.37	0.01
	Zone 400	0.40	0.39	-0.01

16.10.14 Validation Slices

As part of the validation process, the block model was compared with the composite grades within defined sectional criteria. The results were displayed on graphs to check for visual discrepancies between grades along the defined coordinate line. The expected outcome of the estimation process is to observe a relative smoothing of block model grades around the composite values. Validation slices were constructed for each of the areas, and are presented in Appendix B.

16.10.15 Validation Summary

Overall, the estimation of the Tassawini and Sonne deposits is robust and the results have been verified to a reasonable degree of confidence. Globally, the block model average grade is relatively similar to that of the declustered input data, indicating that no biases have been introduced.

The sectional validation slices show a reasonable correlation between the composite grades and the block model grades, and it appears that a reasonable degree of smoothing has taken place for the majority of the domains.

Zone		Search 1	Search 2	Search 3	Rotation
Tassawini East	Х	100	200	400	+Z: 44
	Y	100	200	400	+X: 90
	Z	25	50	100	
	Min. Samples	3	3	3	
	Sectors	4	4	1	
	Max. Samples per sector	10	10	40	
Tasawini South	Х	100	200	400	+Z: 20
	Y	100	200	400	+X: 55
	Z	25	50	100	
	Min. Samples	3	3	3	
	Sectors	4	4	1	
	Max. Samples per sector	10	10	40	
Tasawini West	Х	100	200	400	+Z: 30
	Υ	100	200	400	+X: 30
	Z	25	50	100	
	Min. Samples	3	3	3	
	Sectors	4	4	1	
	Max. Samples per sector	10	10	40	
Mine Creek	Х	50	100	200	+Z: 50
	Y	50	100	200	+X: -55
	Z	12.5	25	50	
	Min. Samples	3	3	3	
	Sectors	1	4	4	
	Max. Samples per sector	20	10	10	
Black Ridge	Х	100	200	400	+Z: 45
-	Υ	100	200	400	+X: -65
	Z	25	50	100	
	Min. Samples	3	3	3	
	Sectors	4	4	1	
	Max. Samples per sector	10	10	40	

Table 20: Search Parameters for Tassawini

Table 21: Search Parameters for Sonne

Zone	Search 1	Search 2	Search 3	Search 4	Rotation
Zone 100 X	25	50	100	150	None
Y	25	50	100	150	
Z	25	50	100	150	
Min. Samples	3	3	3	3	
Sectors	1	4	4	1	
Max. Samples per sector	20	10	10	40	
Zone 200 X	25	50	100	150	None
Y	25	50	100	150	
Z	25	50	100	150	
Min. Samples	3	3	3	3	
Sectors	1	4	4	1	
Max. Samples per sector	20	10	10	40	
Zone 200 X	25	100	200	300	None
Y	25	100	200	300	
Z	25	100	200	300	
Min. Samples	3	3	3	3	
Sectors	1	4	4	1	
Max. Samples per sector	20	10	10	40	
Zone 400 X	25	50	100	150	None
Y	25	50	100	150	
Z	25	50	100	150	
Min. Samples	3	3	3	3	
Sectors	1	4	4	1	
Max. Samples per sector	20	10	10	40	

16.11 Mineral Resource Classification

The Tassawini project mineral resources were estimated in conformity with generally accepted CIM "Estimation of Mineral Resource and Mineral Reserve Best Practices" Guidelines. Mineral resources are not mineral reserves and do not have demonstrated economic viability.

SRK is not aware of any known environmental, permitting, legal, title, taxation, socio-economic, marketing or other relevant issues that could potentially affect this estimate of mineral resources. The mineral resources may be affected by further infill and exploration drilling which may result in increases or decreases in subsequent resource estimates. The mineral resources may also be affected by subsequent assessments of mining, environmental, processing, permitting, taxation, socio-economic and other factors. There is insufficient information in this early stage of study to assess the extent to which the resources will be affected by these factors which are more appropriately assessed in a conceptual study.

Mineral reserves can only be estimated based on the results of an economic evaluation as part of a preliminary feasibility study or feasibility study. As such, no mineral reserves have been estimated by SRK as part of the present assignment. There is no certainty that all or any part of the mineral resource will be converted into a mineral reserve.

Mineral resources for the Tassawini gold project have been classified according to the "CIM Standards on Mineral Resources and Reserves: Definition and Guidelines" (December, 2005) Dr. Lucy Roberts under the supervision of G. David Keller, P.Geo, Principal Resource Geologist, an independent Qualified Person as defined by National Instrument 43-101.

The mineral resource statement for Tassawini Project Area includes all estimated blocks within the geological wireframes above an appropriate cut off grade thresholds. Blocks have been classified as either Indicated or Inferred Mineral Resources.

Resource classification has been carried out using a combination of drillhole spacing, geological and wireframe confidence and was modelled visually by digitizing a wireframe. The indicated wireframe was extended approximately 1.5 times the drill hole spacing on section, as this is where confidence in the geological interpretation was considered to lessen.

Indicated Mineral Resources have been defined in the Tassawini East, Tassawini West, Tassawini South, Black Ridge and Mine Creek areas of the Tassawini domain where drilling is sufficient to demonstrate geometrical and grade continuity to a reasonable level. A wireframe solid was digitized to indicate the areas which have been drilled on a sufficiently close-spaced grid to allow the geological and grade continuity to be estimated with a reasonable level of confidence. **Inferred Mineral Resources** have been defined in some parts of Black Ridge, Tassawini East and Tassawini West. All of the modelled solids in Sonne have been classified as Inferred Mineral Resources.

16.12 Mineral Resource Statement

CIM Definition Standards for Mineral Resources and Mineral Reserves (December 2005) defines a mineral resource as:

"a concentration or occurrence of diamonds, natural solid inorganic material, or natural solid fossilized organic material including base and precious metals, coal, and industrial minerals in or on the Earth's crust in such form and quantity and of such a grade or quality that it has reasonable prospects for economic extraction. The location, quantity, grade, geological characteristics and continuity of a Mineral Resource are known, estimated or interpreted from specific geological evidence and knowledge".

The "reasonable prospects for economic extraction" requirement generally implies that the quantity and grade estimates meet certain economic thresholds and that the mineral resources are reported at an appropriate cut-off grade taking into account extraction scenarios and processing recoveries. SRK considers that portions of the Tassawini and Sonne gold mineralization are amenable for open pit extraction.

In order to determine the quantities of material offering reasonable prospects for economic extraction by an open pit, SRK used the Whittle/Gemcom Four-X Analyser (Whittle) software to develop a series of conceptual nested pit shells using certain optimization parameters based on experience with other similar projects. The conceptual pit optimization was conducted on all available resources (Indicated and Inferred) using the optimization parameters presented in Table 22. The maximum depth of the Whittle shell at the selected long to medium term price was then used as a maximum depth constraint on the resource estimate. The parameters chosen were selected by SRK to represent an "optimistic" expectation reflecting the intent that the resource should comprise material that is potentially economically mineable in the future.

The reader is cautioned that the results from the pit optimization are used solely for the purpose of reporting mineral resources that have reasonable prospects for economic extraction by an open pit. At this stage in the exploration of the Tassawini gold project, there is insufficient information and data to determine appropriate optimization parameters for open mine design and production planning.

Parameter	Unit	Value
Pit Slope Angle	degrees	60
Gold Price	US\$/oz	750
Metallurgical Recovery	%	95
Unit Mining Cost	US\$ / tonne	2
Unit Processing Cost	US\$ / tonne	10
Unit G&A Cost	US\$ / tonne	3

ters

At Tassawini, the conceptual pit-shell extends to the -140 metre elevation (approximately 225 metres below surface), corresponding with the maximum depth of the modelled wireframes. The Whittle pits effectively "bottom out" at the base of the modelled gold mineralization, indicating the optimization algorithm is limited by drilling data. At Sonne, the conceptual shell extends to the zero metre elevation (approximately twenty to fifty metres below surface). The Whittle shell at Sonne is heavily affected by the low gold grades.

The assumptions used to derive the conceptual pit shells are based on SRK's experience of similar deposits in the region, or similar deposits in similar geological setting. The gold price of US\$750 per ounce of gold represents the medium to long term median value of the Consensus Market Forecasts by thirty-two brokers for the next five years. The assumptions used to derive the cut-off grade are detailed in Table 22.

The metallurgical recovery is based on metallurgical testwork undertaken by StrataGold and previous workers for the Tassawini project area as summarized in Section 15.

Using the parameters presented in Table 22 the cut-off value is 0.65 g/t gold. A marginal cut-off grade was also calculated and was based on no mining costs and fifty percent of the G&A costs. The marginal cut-off grade calculated is 0.5g/t gold. SRK considers the marginal cut-off grade represent a usseful lcut-off value for reporting mineral resources of the Tassawini and Sonne gold mineralization. At this cut-off grade the gold mineralization show reasonable geological continuity. This cut-off grade is a similar to cut-off grades used to report global open pit mineral resources for other gold deposits presenting similar geological setting and grade distribution characteristics.

The SRK Mineral Resource Statement for the Tassawini Project Area is presented in Table 23 and summarized by gold zone in Table 24.

Resource	Quantity	Grade	Contained metal
Classification	(kt)	Gold (g/t)	Gold (koz)
Indicated			
Saprolite	5,588	1.3	229
Weathered	986	1.1	35
Fresh	4,193	1.3	173
Total	10,766	1.3	437
Inferred			
Saprolite	1,625	0.7	1
Weathered			
Fresh	240	3.1	24
Total	1,926	1.0	62

Table 23: Mineral Resource Statement* for the Tassawini and Sonne Gold Deposits, Guyana, SRK Consulting March 4, 2008.

* Reported at a cut-off of 0.5 g/t gold. Mineral resources are not mineral reserves and do not have demonstrated economic viability. All figures have been rounded to reflect the relative accuracy of the estimates. The cut-off grades are based on metal price assumptions, US\$750 per ounce of gold and metallurgical recoveries of ninety-five percent gold

Mineralized Zone	Redox	Tonnage (kt)	Gold Grade (g/t)	Cont. Metal (koz)
Indicated Mineral R	esources			
Black Ridge	Saprolite	1,185	1.0	39
Ū	Weathered	221	1.0	7
	Fresh	1,091	1.0	34
	Total	2,497	1.0	80
Mine Creek	Saprolite	380	1.1	13
	Weathered	20	1.6	1
	Fresh	31	1.0	1
	Total	431	1.1	15
Tassawini East	Saprolite	751	1.3	31
	Weathered	208	1.1	7
	Fresh	742	2.8	66
	Total	1,700	1.9	104
Tassawini South	Saprolite	659	1.0	22
	Weathered	63	0.5	1
	Fresh	89	0.7	2
	Total	811	1.0	25
Tassawini West	Saprolite	2,613	1.5	124
	Weathered	474	1.2	19
	Fresh	2,240	1.0	70
	Total	5,327	1.2	213
Total Indicated	Saprolite	5,588	1.3	229
	Weathered	986	1.1	35
	Fresh	4,193	1.3	173
	Total	10,766	1.3	437
Inferred Mineral Re	sources			
Black Ridge	Saprolite	99	0.6	2
-	Weathered	45	0.7	1
	Fresh	116	0.8	3
	Total	260	0.7	6
Tassawini East	Saprolite	54	0.6	1
	Weathered	3	1.0	0.1
	Fresh	109	6.0	21
	Total	166	4.1	22
Tassawini West	Saprolite	160	0.8	4
	Weathered	13	0.5	0.2
	Fresh	15	0.4	0.2
	Total	188	0.7	4
Sonne	Saprolite	1,312	0.7	29
	Total	1,312	0.7	<u>2</u> 9
Total Inferred	Saprolite	1,625	0.7	36
	Weathered	61	0.7	1
	Fresh	240	3.1	24
	Total	1.926	1.0	62

Table 24: Mineral Resource* By Zones for the Tassawini andSonne Gold Deposits.

* Reported at a cut-off of 0.5 g/t gold. Mineral resources are not mineral reserves and do not have demonstrated economic viability. All figures have been rounded to reflect the relative accuracy of the estimates. The cut-off grades are based on metal price assumptions, US\$750 per ounce of gold and metallurgical recoveries of ninety-five percent gold.

16.13 Global Grade Tonnage Curves

The Tassawini and Sonne mineral resources are sensitive to the selection of cut-off grade. The global block model tonnage and grade estimates at various gold cut-off grades are presented for each gold deposit in Table 27 to Table 31. Figure 24 to Figure 28 present grade tonnage curves for each gold zone. The reader is cautioned that the global tonnages and grade estimates presented in the following tables should not be misconstrued as mineral resources.

Cut-off Grade (Au g/t)	Tonnage (kt)	Gold Grade (g/t)	Cont. Metal (koz)
3.00	486	7.57	118
1.00	4,447	2.18	312
0.75	6,983	1.70	382
0.50	11,237	1.29	466
0.35	13,759	1.13	500
0.00	16,192	1.00	522

Table 25: Tassawini Global Summary – Comparative Cut-offs

Figure 22: Tassawini Global Grade Tonnage Curve

Cut-off Grade (Au g/t)	Tonnage (kt)	Grade (g/t Au)	Cont. Metal (koz)
1.00	111	1.16	4
0.75	359	0.94	11
0.50	1,312	0.69	29
0.35	2,655	0.55	47
0.00	5,011	0.41	67

Table 26: Sonne Total Saprolite Summary – Comparative Cut-offs

Figure 23: Sonne Total Saprolite Grade Tonnage Curve

Cut-off Grade (Au g/t)	Tonnage (kt)	Grade (g/t Au)	Cont. Metal (koz)
3.00	39	3.9	5
1.00	906	1.5	45
0.75	1,624	1.2	65
0.50	2,757	1.0	87
0.35	3,422	0.9	96
0.00	4,173	0.8	103

Table 27: Black Ridge Summary – Comparative Cut-offs

Figure 24: Black Ridge Grade Tonnage Curve

Cut-off Grade (Au g/t)	Tonnage (kt)	Grade (g/t Au)	Cont. Metal (koz)
3.00	0.01	4.1	0.002
1.00	184	1.5	9
0.75	300	1.3	12
0.50	431	1.1	15
0.35	504	1.0	16
0.00	652	0.8	17

Table 28: Mine Creek – Comparative Cut-offs

Figure 25: Mine Creek Grade Tonnage Curve

Cut-off Grade (Au g/t)	Tonnage (kt)	Grade (g/t Au)	Cont. Metal (koz)
3.00	198	11.8	75
1.00	690	4.5	100
0.75	1,056	3.3	111
0.50	1,866	2.1	126
0.35	2,470	1.7	135
0.00	3,176	1.4	141

Table 29: Tassawini East – Comparative Cut-offs

Figure 26: Tassawini East Grade Tonnage Curve

Cut-off Grade (Au g/t)	Tonnage (kt)	Grade (g/t Au)	Cont. Metal (koz)
3.00	11	3.8	1
1.00	255	1.6	13
0.75	440	1.3	18
0.50	811	1.0	25
0.35	908	0.9	27
0.00	961	0.9	27

Table 30: Tassawini South – Comparative Cut-offs

Figure 27: Tassawini South Grade Tonnage Curve

Cut-off Grade (Au g/t)	Tonnage (kt)	Grade (g/t Au)	Cont. Metal (koz)
3.00	242	4.8	37
1.00	2462	1.9	147
0.75	3643	1.5	180
0.50	5515	1.2	217
0.35	6621	1.1	232
0.00	7423	1.0	240

Table 31: Tassawini West - Comparative Cut-offs

Figure 28: Tassawini West Grade Tonnage Curve

16.14Previous Mineral Resource Estimates

Mineral resources for the Tassawini project have been previously estimated by S. Lomas, P.Geo. of Lions Gate Geological Consulting Inc. Estimates were prepared for four gold zones: Tassawini West, Tassawini East, Tassawini South, and Black Ridge. This mineral resource model was documented in a technical report prepared by Lomas and dated March 15, 2007.

Lomas modelled gold zones using a 0.45 g/t gold cut-off grade. The mineral resources were reported at a 0.5 g/t gold cut-off (Table 32). Tonnages were evaluated using bulk densities of 1.97, 2.20, and 2.70 grams per cubic centimetre for saprolite, mix and fresh rock weathering zones, based on 169 measurements taken since March 2007.

Table 32: Previous Mineral Resource Statement for the TassawiniGold Project, S. Lomas, March 15, 2007.

Zone	Class	Cut-off g/t Au	Quantity (Tonnes)	Grade (g/t Gold)	Contained metal (ounces)
Tassawini East	Indicated	0.50	377,000	1.52	
Tassawini West	Indicated	0.50	3,062,000	1.76	
Tassawini South	Indicated	0.50	296,000	1.70	
ALL Zones	Indicated	0.50	3,735,000	1.73	208,316
Tassawini East	Inferred	0.50	583,000	1.40	
Tassawini West	Inferred	0.50	1,583,000	1.28	
Tassawini South	Inferred	0.50	31,000	1.34	
Black Ridge	Inferred	0.50	1,499,000	1.21	
ALL Zones	Inferred	0.50	3,696,000	1.27	151,089

Extreme gold grades were capped based on analysis of histograms and probability plots. Fifty-eight assays out of 4,150 were capped. Assay data were composited to three metre intervals; however due to software limitations, all assays of 0.5 metre length and shorter were eliminated during compositing.

Ordinary kriging, inverse distance and nearest neighbour estimators were used to interpolate the capped gold grades into an unrotated block model aligned with the UTM grid. Block size was set at ten by ten by five metres and each block was coded on a percentage basis using the geology and grade wireframes and weathering surfaces. In most cases, a minimum of three, and a maximum of twelve composites from a minimum of two boreholes were used to estimate a grade in each block.

The main difference between the Lomas 2007 estimate and the revision presented herein are:

- New drilling data obtained sinece April 2007;
- Smaller size of the gold zones, based on revised geological interpretation;
- A reassessment of specific gravity data.

17 Other Relevant Data

SRK is not aware of any other data relevant to this report.

18 Interpretation and Conclusions

SRK reviewed and audited the exploration data available for the Tassawini and Sonne gold deposits. This review suggests that the exploration data accumulated by StrataGold is generally reliable for the purpose of resource estimation.

SRK used three dimensional modelling software to construct mineralization wireframes for different oxidation horizons. Various separate oxide and sulphide mineralization wireframes were interpreted and modelled using a gold cut-off determined to visually distinguish, with confidence, barren rock from mineralization.

Following geostatistical analysis and variography, SRK constructed an initial mineral resource block model for the Tassawini and Sonne gold deposits constraining grade interpolation to within the various mineralization domains. After validation and classification, SRK used preliminary pit optimization routines to assess the portions of the Tassawini and Sonne gold deposits that shows reasonable prospects for economic extraction from an open pit. A pit shell was used to report an open pit resource at a 0.5 gpt gold cut-off.

Mineral resources for the Tassawini and Sonne gold deposits have been estimated in conformity with generally accepted CIM "Estimation of Mineral Resource and Mineral Reserves Best Practices" Guidelines. There is insufficient information at this early stage of study to assess the extent to which the mineral resources will be affected by environmental, permitting, legal, title, taxation, socio-economic, marketing or other relevant factors.

In the opinion of SRK, the block model resource estimate and resource classification reported herein are a reasonable representation of the global gold mineral resources found in the Tassawini and Sonne gold deposits. Mineral resources are not mineral reserves and do not have demonstrated economic viability. There is no certainty that all or any part of the mineral resource will be converted into mineral reserve.

In reviewing the mineral resource model SRK draws the following conclusions: The preliminary pit optimization work conducted to allow SRK to report an open pit resource clearly indicates that the ultimate pit depth is driven by the known depth of mineralization. However, if the interpretation that these deposits are shear zone hosted is correct, there is potential for deeper mineralization that has not been intersected with the current drilling.

Due to the large amount of reverse circulation drilling, especially at Sonne, large parts of the resource can only be classified as Inferred. There is, therefore, an opportunity to upgrade parts of the Inferred mineral resources to an Indicated classification with additional diamond core drilling. The Tassawini and Sonne gold deposits represent a significant, albeit historically known, discovery. However, potential stand alone development may be challenging considering its location and its grade tonnage characteristics. Obviously, any additional discovery through regional exploration will have a positive impact on the development potential of the Tassawini and Sonne project.

The characteristics of the Tassawini and Sonne gold deposits are of sufficient merit to justify undertaking preliminary engineering and environmental studies aimed at completing the characterization of the context of the oxide and sulphide mineralization. In addition to providing a Preliminary Economic Assessment for the project, this study will be useful in determining certain specific economic thresholds for a viable mining operation in this part of Guyana.

In order to base the Preliminary Economic Assessment on project specific data, StrataGold should consider undertaking the following studies:

- Detailed topographic survey to derive accurate topography data (the area should include the deposit and other potential mine infrastructures such as processing and mine waste facilities);
- ABA testing and geochemical characterization of sulphide and barren rocks;

• Bench scale metallurgical studies including petrography, grinding and milling testing and metallurgy focusing on optimization of processing and resulting in a conceptual mill flow sheet;

• Review of geotechnical data including recommendations for improving field geotechnical data collection and consideration for specific geotechnical drilling.

These studies are essential to complete the full characterization of the context the Tassawini and Sonne deposits, to support a meaningful conceptual mine design and to provide robust key assumptions for the base case of an economic model considered for a Preliminary Economic Assessment.

19 Recommendations

StrataGold has conducted a large amount of surface drilling and geophysical, and geochemical exploration on the Tassawini and Sonne deposits. SRK is of the opinion that the geology of the deposit is well understood and that additional drilling would not add a significant amount of information. Furthermore, SRK is of the opinion that the mineralized zones are well constrained. The resource estimation detailed in this report shows that a significant amount of gold is contained within the mineralized zones. Therefore, SRK believes that StrataGold should undertake a Preliminary Economic Assessment to explore the possibilities of extracting the contained metal economically. Of special interest are the remote location of the property and the lack of well developed infrastructure in this part of Guyana.

In order to base the Preliminary Economic Assessment on project specific data, StrataGold should consider undertaking the following studies:

- Detailed topographic survey to derive accurate topography data (the area should include the deposit and other potential mine infrastructures such as processing and mine waste facilities);
- ABA testing and geochemical characterization of sulphide and barren rocks;
- Bench scale metallurgical studies including petrography, grinding and milling testing and metallurgy focusing on optimization of processing and resulting in a conceptual mill flow sheet.
- Review of geotechnical data including recommendations for improving field geotechnical data collection and consideration for specific geotechnical drilling.

These studies are essential to complete the characterization of the Tassawini project, to support a meaningful conceptual mine design and to provide robust key assumptions for the base case of an economic model considered for a Preliminary Economic Assessment. It is difficult to provide accurate cost estimate for completing a Preliminary Economic Assessment because this type of study typically involves a significant component of field studies (hydrology, geotechnical, environmental and metallurgy) the cost of which are dependent on the specific scope of work. In our experience, the preparation of a Preliminary Economic Assessment for an open pit project that is incompletely characterized and is located in a remote location typically costs between US\$300,000 to US\$500,000. Completion of the additional recommended studies is estimated to cost approximately \$1,000,000 details are outlined in Table 33.

PEA Program	Estimated Cost [US\$]		
Topographic survey	100,000		
Geo-environmental assessment	150,000		
Metallurgical test work	200,000		
Geotechnical Review	50,000		
Engineering PEA report	400,000		
Other work:			
Environmental baseline study	50,000		
Geotechnical drilling	50,000		
Total	1,000,000		

Table 33. Estimated Cost for Proposed Program

The Preliminary Economic Assessment will build on this resource estimate completed by SRK and will include: capital cost for mining, plant and infrastructure; operating costs for mining, plant, camp, G&A; pit optimization and preliminary pit design; waste dump construction; preliminary tailings construction; mine planning and scheduling; reserve statement; geotechnical review, water management plan, pit slope determinations, updated metallurgical test work, mapping of the environmental permitting requirements, preliminary environmental advisement, conceptual decommissioning and mine closure plan and requirements and a technical economic model.

StrataGold should consider completing a desktop scoping study prior to commencement of a Preliminary Economic Assessment.

20 References

Barron, C.N., 1966. Interim Report on Surveys on Puruni SE 1 and 2 (Peters Mine Area). Geological Survey of Guyana, Unpublished Report, pp. 1-6.

Barron, C.N., 1969. A Further Guide to Mineral Exploration in Guyana (Supplement to GGS Bulletin No. 38), Notes on 46 of the more interesting prospects brought to light between 1965 and 1969. GGS Department, Guyana.

Carter, M. W. 1966. Geochemical Survey, Tassawini Mine Area, Geological Survey, Unpublished Report No. MWC 3/66.

Collings, P S, Khosrowshahi, S and Ness, P K, 2001. Geological Modelling and Geostatistical Resource Estimation of the Hope North Deposit, in Mineral Resource and Ore Reserve Estimation – The AusIMM Guide to Good Practice (Ed: A C Edwards), pp269-284 (The Australasian Institute of Mining and Metallurgy: Melbourne).

Davies, D.A. Bryn 1940. Report on the Gold and Manganese deposits of the Lower Barama River, North West District Geol. Surv. Brit. Guiana, Bull. 14, 32 p.Gibbs and Barron, 1993)

Hurley, P.M., de Almeida, F.F.M., Melcher, G.C., Cordani, U.G., Rand, J.R., Kawashita, K., Vandaros, P., Pinson, Jr. W.H., and Fairbarn, H.W., 1967. Test of Continental Drift by Comparison of Radiometric Ages: Science, 157, pp. 495-500, Aug 4, 1967.Lengyel, 1996

Lomas, S., 2007: Technical Report on the Tassawini Gold Property Northwest District, Guyana, South America, Lions Gate Geological Consulting Inc., 285 p., Available at <u>www.sedar.com</u>.

McConnell, R.B. and Williams, E., 1970. Distribution and Provisional Correlation of the Precambrian of the Guiana Shield. In Proceedings of the Eighth Guiana Geological Conference, Georgetown Guyana., pp. I-2 to I-22 + Maps. Government of Guyana Geological Survey Department Macdonald (1968),

Punwasee, J.D.W. & Muller, W.G., 1966. Exploration Work in Old Tassawini Gold Mine Area, Barama River, N.W. District, Guyana, Unpublished Geological Survey Report No. WGM 1/66.

Thompson, P.H. 2007a. Petrographic analysis and application of metamorphic gold exploration tools to the Tassawini project area, northern Guyana; unpublished report for StrataGold Corporation, 26p

Thompson, P.H. 2007b. Petrographic analysis and application of metamorphic gold exploration tools to the Tassawini project area, northern Guyana, Report 2; unpublished report for StrataGold Corporation, 27p

Voicu, G., Bardoux, M., Jebrak, M., and Crepau, R., 1999. Structural, Mineralogical and Geochemical Studies of the Paleoproterozoic Omai Gold Deposit, Guyana. In Economic Geology, Volume 94, pp. 1277-1304.

APPENDIX A

Analytical Quality Control Data Selected Bias and Relative Precision Charts

Time Series for Field Standard 61 Pb Assayed by ALS Chemex Labs (2005-2007 DDH Samples)

Field duplicate pairs assayed by ALS-Chemex, 2005-2007 Core samples

Time series for control samples assayed by ACME with 2007 core samples.

Time series for control samples assayed by ACME with 2007 core samples.

Pulp replicate pairs assayed by ACME, 2005-2007 Core samples

Time series for control samples assayed by ACME with 2007 RC samples.

Time series for control samples assayed by ACME and ALS-Chemex with 2007 RC samples.

Field duplicate pairs assayed by ALS-Chemex, 2005-2007 RC samples.
APPENDIX B

List of Drillholes used in Resource Estimation

Hole ID	Easting	Northing	Elevation	Length	Hole Type	Mineral Zone
SD063	214,847	832,298	65.3	184.8	DDH	Black Ridge
SD066	214,808	832,268	56.2	204.5	DDH	Black Ridge
SD070	214,773	832,239	54.3	189.5	DDH	Black Ridge
SD072	214,888	832,332	63.8	174.5	DDH	Black Ridge
SD084	214,809	832,234	59.6	199.5	DDH	Black Ridge
SD087	214,842	832,231	64.2	163.5	DDH	Black Ridge
SD090	214,847	832,263	63.6	178.5	DDH	Black Ridge
SD093	214,885	832,298	63.7	199.5	DDH	Black Ridge
SD097	214,920	832,297	61.5	151.5	DDH	Black Ridge
SD099	214,869	832,317	65.7	162.0	DDH	Black Ridge
SD101	214,073	032,340	55.9	146.5		Diack Ridge
SD105 SD122	214,029	032,200 832 218	56.6	100.0		Black Ridge
SD122	214,731	832,210	61.3	199.5		Black Ridge
SD130	214,020	832 336	61.8	193.5		Black Ridge
SD132	214,834	832,316	61.2	211.5	DDH	Black Ridge
SD134	214,814	832,302	59.0	223.5	DDH	Black Ridge
SD137	214,781	832,275	48.8	199.5	DDH	Black Ridge
SD140	214,793	832,253	52.3	190.5	DDH	Black Ridge
SD142	214,799	832,286	55.7	199.8	DDH	Black Ridge
SD212	214,808	832,197	56.1	167.5	DDH	Black Ridge
SD213	214,823	832,214	61.3	200.5	DDH	Black Ridge
SD215	214,859	832,244	59.7	149.5	DDH	Black Ridge
SD216	214,875	832,259	57.3	112.0	DDH	Black Ridge
SD218	214,863	832,278	62.4	152.5	DDH	Black Ridge
SD220	214,903	832,314	64.2	104.5	DDH	Black Ridge
SD221	214,855	832,368	47.0	133.5	DDH	Black Ridge
SD222	214,751	832,224	52.6	166.5	DDH	Black Ridge
SD223	214,759	832,257	48.0	197.5	DDH	Black Ridge
SD224	214,839	832,353	49.2	127.5	DDH	Black Ridge
SD225 SD226	214,700	032,100	47.4	104.5		Black Ridge
SD220 SD227	214,021	832,334	49.4	128.5		Black Ridge
SD227	214,007	832 320	42.7 50.1	220.5		Black Ridge
SD229	214,000	832 154	43.4	127.5		Black Ridge
SD230	214,846	832,190	50.1	155.5	DDH	Black Ridge
SD231	214,865	832,207	49.2	122.3	DDH	Black Ridge
SD232	214,822	832,371	43.2	151.5	DDH	Black Ridge
SD233	214,885	832,222	46.2	131.5	DDH	Black Ridge
SD234	214,808	832,351	40.7	171.0	DDH	Black Ridge
SD235	214,828	832,177	53.7	152.5	DDH	Black Ridge
SD236	214,763	832,290	43.9	224.5	DDH	Black Ridge
SD237	214,787	832,337	41.8	157.5	DDH	Black Ridge
SD238	214,781	832,304	49.7	200.5	DDH	Black Ridge
SD239	214,842	832,387	36.4	99.0	DDH	Black Ridge
SD254	214,809	832,353	40.4	70.0	DDH	Black Ridge
SD255	214,810	832,353	40.4	101 5	DDH	Black Ridge
SD257 SD250	214,679	032,300 832 404	43.3	101.5		Black Ridge
SD259	214,000	832 333	43.2	110.0		Black Ridge
SD200	214,920	832 312	57 4	109.5		Black Ridge
SD281	214,858	832,137	32.1	100.5	DDH	Black Ridge
SD284	214.880	832,188	33.9	99.0	DDH	Black Ridge
SD287	214,864	832,168	35.9	136.5	DDH	Black Ridge
SD290	214,898	832,165	23.0	109.5	DDH	Black Ridge
SD293	214,902	832,201	29.1	99.0	DDH	Black Ridge
SD295	214,799	832,121	24.0	106.5	DDH	Black Ridge
SD298	214,781	832,146	29.6	115.5	DDH	Black Ridge
SD300	214,763	832,168	34.4	121.5	DDH	Black Ridge
SD301	214,746	832,189	42.1	125.7	DDH	Black Ridge
SD304	214,766	832,204	44.6	147.3	DDH	Black Ridge
SD308	214,825	832,137	38.9	102.0	DDH	Black Ridge
SD310	214,743	832,152	39.6	115.5	DDH	Black Ridge
SU313	∠14,760 244,775	832,131	31.8	118.5	DDH	Black Ridge
SU316	214,775	832,112	31.6	115.5		Black Ridge
SD310	214,791	002,091 832 308	31.1 121	215 5		Black Ridge
SD354	214,766	832,321	45.7	215.5	DDH	Black Ridge

SRK Consulting
3CS024.001 – Takara Resources Inc.
Resource Estimation Technical Report, Tassawini-Sonne Au Project, Guyana

Hole ID	Easting	Northing	Elevation	Length	Hole Type	Mineral Zone
SD355	214,751	832,267	44.8	212.5	DDH	Black Ridge
SD367	214,815	831,996	24.7	134.5	DDH	Black Ridge
SD368	214,797	832,013	28.6	122.5	DDH	Black Ridge
SD369	214,742	832,068	46.3	122.5	DDH	Black Ridge
SD403	214,792	831,945	25.0	113.1	DDH	Black Ridge
SD404	214,776	831,963	28.0	140.5	DDH	Black Ridge
SD405	214,808	831,925	21.0	86.5	DDH	Black Ridge
SD415	214,000	032,027	32.0	96.0		Black Ridge
SD410	214,030	832,045	30.0	110.5		Black Ridge
SD418	214,073	832 111	30.0	74.5		Black Ridge
F141	214.819	832.282	59.8	51.0	RC	Black Ridge
F142	214,827	832,251	60.5	63.2	RC	Black Ridge
F143	214,837	832,224	63.8	60.1	RC	Black Ridge
F144	214,843	832,203	57.6	61.7	RC	Black Ridge
F162	214,858	832,249	63.7	58.6	RC	Black Ridge
F163	214,814	832,192	58.0	57.1	RC	Black Ridge
F164	214,805	832,220	58.6	58.7	RC	Black Ridge
F165	214,798	832,244	56.0	38.8	RC	Black Ridge
F100	214,047	032,201	04.0 62.1	47.9	RC	Black Ridge
F168	214,040	832,307	55 1	38.8	RC	Black Ridge
F169	214,001	832 281	50.1	49.5	RC	Black Ridge
F170	214.872	832,300	65.9	64.7	RC	Black Ridge
F171	214,857	832,332	62.0	44.9	RC	Black Ridge
F172	214,888	832,323	66.2	63.2	RC	Black Ridge
F173	214,896	832,300	63.4	63.2	RC	Black Ridge
F174	214,778	832,214	52.5	41.8	RC	Black Ridge
F175	214,767	832,237	54.2	60.9	RC	Black Ridge
F176	214,795	832,189	52.4	61.7	RC	Black Ridge
F1//	214,830	832,160	50.3	54.0	RC	Black Ridge
F178	214,855	832,169	43.2	60.1	RC	Black Ridge
F179 F180	214,030	832 231	41.4 50.8	53.5 54.0	RC	Black Ridge
F181	214,005	832,336	64 6	47.9	RC	Black Ridge
F182	214,942	832.346	58.6	57.1	RC	Black Ridge
F183	214,872	832,348	56.9	58.6	RC	Black Ridge
F184	214,847	832,353	55.6	38.8	RC	Black Ridge
F185	214,980	832,425	52.0	60.1	RC	Black Ridge
F186	214,991	832,391	49.9	34.2	RC	Black Ridge
F187	215,016	832,407	43.7	30.4	RC	Black Ridge
F188	215,075	832,581	42.7	62.3	RC	Black Ridge
F189 F101	215,085	832,553	40.2	61.7	RC	Black Ridge
F197	214,075	832 526	33.2	43.5	RC	Black Ridge
F193	215,004	832 631	32.1	34.2	RC	Black Ridge
F194	215.222	832.604	33.1	37.3	RC	Black Ridge
F195	215,235	832,576	25.2	18.3	RC	Black Ridge
F196	215,118	832,473	24.3	23.6	RC	Black Ridge
F197	215,127	832,442	22.8	14.4	RC	Black Ridge
F198	215,065	832,427	35.6	31.2	RC	Black Ridge
F199	215,041	832,406	31.6	32.7	RC	Black Ridge
F204	214,904	832,277	53.2	58.6	RC	Black Ridge
F205	214,889	832,242	49.5	52.5 67.9	RC	Black Ridge
F210 F211	214,914	832,300	57.9	42.6	RC	Black Ridge
F212	214,903	832 377	55.3	61.2	RC	Black Ridge
F212	214,969	832.386	53.7	61.7	RC	Black Ridge
F214	214,962	832,408	58.3	63.2	RC	Black Ridge
F215	214,954	832,431	58.5	61.7	RC	Black Ridge
F239	214,932	832,314	61.7	61.7	RC	Black Ridge
F240	214,915	832,313	64.9	56.2	RC	Black Ridge
F241	214,874	832,240	58.4	61.7	RC	Black Ridge
F242	214,867	832,268	60.2	62.4	RC	Black Ridge
F243	214,890	832,282	56.3	60.1	RC DC	Black Ridge
F244 F245	∠14,803 211 700	032,102	42.4 17 2	41.8 11.0		Black Ridge
F246	214,702 214 845	832 241	47.3 62.0	41.0 62 3	RC	Black Ridge
F247	214.833	832.284	62.4	54.0	RC	Black Ridge
F248	214,859	832,288	66.0	60.1	RC	Black Ridge

SRK Consulting
3CS024.001 – Takara Resources Inc.
Resource Estimation Technical Report, Tassawini-Sonne Au Project, Guyana

Hole ID	Easting	Northing	Elevation	Lenath	Hole Type	Mineral Zone
F249	214,819	832,235	64.0	63.9	RC	Black Ridge
F253	214,821	832,208	60.8	61.7	RC	Black Ridge
F254	214,922	832,269	48.7	61.7	RC	Black Ridge
F503	214,692	832,132	56.4	66.2	RC	Black Ridge
F504	214,706	832,110	53.9	81.5	RC	Black Ridge
F505	214,724	832,084	49.6	81.5	RC	Black Ridge
F506	214,744	832,063	46.7	81.5	RC	Black Ridge
F507	214,779	831,987	26.5	44.9	RC	Black Ridge
F508	214,785	831,960	22.3	31.2	RC	Black Ridge
F509 E510	214,773	821 016	19.0	20.5	RC PC	Black Ridge
F511	214,703	831 893	17.5	20.0	RC	Black Ridge
F546	215.034	832,424	41.4	66.2	RC	Black Ridge
F547	215,052	832,440	40.5	57.1	RC	Black Ridge
F548	215,068	832,458	39.0	58.6	RC	Black Ridge
F549	215,070	832,520	38.1	54.0	RC	Black Ridge
F550	215,151	832,584	41.1	72.3	RC	Black Ridge
F551	215,173	832,591	39.1	55.6	RC	Black Ridge
F552	215,196	832,599	38.3	57.1	RC	Black Ridge
F553	215,242	832,630	31.6	44.9	RC	Black Ridge
F503	214,692	832,132	56.4	66.2	RC	Black Ridge
F304 E505	214,700	832,110	23.9	01.0 91.5	RC	Black Ridge
F505 E506	214,724	832,063	49.0	01.0 81.5	RC	Black Ridge
F507	214,744	831 987	26.5	44 Q	RC	Black Ridge
F508	214,775	831,960	22.3	31.2	RC	Black Ridge
F509	214,775	831,939	19.6	31.2	RC	Black Ridge
F510	214,763	831,916	17.5	20.5	RC	Black Ridge
F511	214,754	831,893	15.5	31.2	RC	Black Ridge
F1391	213,362	831,533	26.3	46.4	RC	Caravan
F1392	213,380	831,516	25.5	44.9	RC	Caravan
F1393	213,398	831,499	22.7	40.3	RC	Caravan
F1394	213,416	831,483	20.5	46.4	RC	Caravan
F1395	213,435	831,466	18.0	40.3	RC	Caravan
F1396	213,445	831,455	44.0	37.3	RC	Caravan
F1397 F1398	213,400	831 417	44.0	31.2	RC	Caravan
F1399	213,400	831 400	43.5	14.4	RC	Caravan
F1400	213,508	831,400	43.0	35.7	RC	Caravan
F1401	213,546	831,372	42.0	34.2	RC	Caravan
F1402	213,567	831,350	42.0	49.5	RC	Caravan
F1403	213,438	831,187	41.5	19.0	RC	Caravan
SD378	215,278	831,126	11.3	134.5	DDH	Gas Station
SD379	215,313	831,093	12.9	125.5	DDH	Gas Station
SD380	215,354	831,062	18.8	101.5	DDH	Gas Station
SD356	215,639	832,348	26.1	170.5	DDH	Ithaka
SD357	215,653	832,370	26.5	125.0		Ithaka
SD350	215,015	032,307	14.9	170.0		Ittaka
SD360	215,055	832,303	18.4	164.5		Ithaka
SD361	215.620	832.331	17.9	158.5	DDH	Ithaka
SD108	214,949	832,252	47.1	172.5	DDH	Mine Creek
SD156	215,008	832,361	36.6	152.5	DDH	Mine Creek
SD157	215,029	832,378	34.9	152.5	DDH	Mine Creek
SD159	215,040	832,396	34.0	152.5	DDH	Mine Creek
SD162	215,019	832,346	34.8	152.5	DDH	Mine Creek
SD165	214,985	832,310	35.3	152.5	DDH	Mine Creek
SD167	214,997	832,331	34.6	129.9	DDH	Mine Creek
SD169	214,967	832,295	39.6	281.5		Mine Creek
SD173 SD103	215,040	032,303 832 378	31.3 22 A	131.3	חטח	Mine Creek
SD195	215,057	832,370	22.0	134 3	חחח	Mine Creek
SD196	215.065	832,323	25.2	233.5		Mine Creek
SD198	215.053	832.309	23.7	98.5	DDH	Mine Creek
SD199	215,039	832,326	24.2	101.2	DDH	Mine Creek
SD201	215,017	832,306	24.6	224.5	DDH	Mine Creek
SD203	215,038	832,284	37.0	232.5	DDH	Mine Creek
SD207	214,998	832,293	32.8	254.5	DDH	Mine Creek
SD210	214,978	832,353	36.3	99.0	DDH	Mine Creek
SD253	215,126	832,366	33.7	100.5	DDH	Mine Creek

SRK Consulting
3CS024.001 – Takara Resources Inc.
Resource Estimation Technical Report, Tassawini-Sonne Au Project, Guyana

Hole ID	Easting	Northing	Elevation	Lenath	Hole Type	Mineral Zone
SD256	215,083	832,388	22.2	120.5	DDH	Mine Creek
F133	215,039	832,258	46.6	61.7	RC	Mine Creek
F136	215,019	832,265	47.9	55.6	RC	Mine Creek
F137	214,990	832,256	48.0	31.2	RC	Mine Creek
F138	215,021	832,347	31.8	35.8	RC	Mine Creek
F139	214,958	832,246	46.0	49.5	RC	Mine Creek
F140	214,988	832,315	33.0	28.1	RC	Mine Creek
F190	214,949	832,272	42.0	44.9	RC	Mine Creek
F200	215,033	832,376	31.6	33.3	RC	Mine Creek
F201	214,982	832,354	36.4	31.2	RC	Mine Creek
F202	214,962	832,229	47.2	46.4	RC	Mine Creek
F200	215,011	032,330	30.9	31.2	RC	Mine Creek
F207	215,035	032,204 832,260	37.4	37.3	RC	Mine Creek
F200	215,054	832,209	31.3	35.7	RC	Mine Creek
F238	213,000	832,290	35.6	44 9	RC	Mine Creek
F250	215,030	832,359	32.1	49.5	RC	Mine Creek
F251	215,041	832,391	31.5	49.5	RC	Mine Creek
F252	215.009	832.275	42.0	52.5	RC	Mine Creek
SD261	214,403	832,614	23.0	104.5	DDH	Sonne North
SD262	214,353	832,600	22.9	101.5	DDH	Sonne North
SD263	214,418	832,574	38.9	101.5	DDH	Sonne North
SD264	214,371	832,553	31.5	101.5	DDH	Sonne North
SD265	214,388	832,508	31.7	101.5	DDH	Sonne North
SD266	214,433	832,528	51.3	100.0	DDH	Sonne North
SD267	214,481	832,543	44.8	110.5	DDH	Sonne North
SD268	214,492	832,495	42.8	110.5	DDH	Sonne North
SD269	214,442	832,475	30.8	101.5	DDH	Sonne North
SD270	214,400	832,464	20.6	101.5	DDH	Sonne North
SD271	214,325	832,544	16.5	101.5	DDH	Sonne North
SD272	214,314	832,587	13.9	101.5	DDH	Sonne North
SD273	214,264	832,527	10.7	101.5	DDH	Sonne North
SD274	214,340	832,499	17.6	104.5	DDH	Sonne North
SD275	214,354	832,450	16.1	101.5	DDH	Sonne North
SD276	214,301	832,433	14.0	101.5	DDH	Sonne North
SD277	214,286	832,480	14.1	100.3	DDH	Sonne North
SD279	214,314	832,383	17.0	101.5	DDH	Sonne North
SD280	214,329	832,339	29.6	101.5	DDH	Sonne North
SD282	214,344	832,292	36.8	101.5	DDH	Sonne North
SD283	214,321	832,262	27.5	101.5		Sonne North
SD203	214,299	032,300	32.0	101.5	חטט	Sonne North
SD200	214,200	032,309	10.0	101.5	חסס	Sonne North
SD200	214,223	832,515	24.1	101.5		Sonne North
SD203	214,211	832 581	13.3	101.5		Sonne North
SD291	214,255	832 386	16.2	101.1		Sonne North
SD294	214,304	832 350	25.6	101.5		Sonne North
SD296	214,390	832,304	34.2	101.5	DDH	Sonne North
SD388	213,901	832.435	22.1	134.5	DDH	Sonne North
SD389	213,896	832,509	25.6	101.5	DDH	Sonne North
SD390	214,002	832,564	16.5	104.5	DDH	Sonne North
SD413	214,081	832,474	25.1	101.5	DDH	Sonne North
SD414	214,422	832,366	20.0	108.3	DDH	Sonne North
F1000	214,371	832,346	25.9	35.0	RC	Sonne North
F1001	214,362	832,383	17.1	15.9	RC	Sonne North
F1002	214,372	832,378	17.8	15.9	RC	Sonne North
F1003	214,383	832,369	18.1	22.0	RC	Sonne North
F1004	214,392	832,363	19.4	20.5	RC	Sonne North
F1005	214,403	832,358	21.0	17.5	RC	Sonne North
F1006	214,410	832,345	22.2	37.8	RC	Sonne North
F1007	214,411	832,333	22.2	37.3	RC	Sonne North
F1008	214,396	832,387	14.3	25.1	RC	Sonne North
F1009	214,406	832,378	15.7	20.5	RC	Sonne North
F1086	214,543	832,479	26.4	41.8	RC	Sonne North
F1087	214,522	832,525	26.9	38.8	RC	Sonne North
F1088	214,538	832,509	25.8	38.8	KC	Sonne North
F1089	214,558	832,495	20.6	26.3	RC	Sonne North
F1090	214,230	032,511	17.0	31.2		Sonne North
F1091	∠14,249 214 277	032,020	15.9	29.0 21.0		Sonna North
1 IU92	214,277	032,049	14.1	31.Z	KU	Some North

SRK Consulting
3CS024.001 – Takara Resources Inc.
Resource Estimation Technical Report, Tassawini-Sonne Au Project, Guyana

Hole ID	Easting	Northing	Elevation	Length	Hole Type	Mineral Zone
F1093	214,284	832,640	13.3	26.6	RC	Sonne North
F1094	214,207	832,777	27.1	35.4	RC	Sonne North
F1095	214,192	832,792	21.6	25.1	RC	Sonne North
F1096	214,172	832,775	24.5	37.3	RC	Sonne North
F1097	214,166	832,763	24.7	40.3	RC	Sonne North
F1098	214,156	832,746	22.9	32.7	RC	Sonne North
F1099	214,338	832,251	28.0	26.6	RC	Sonne North
F1100	214,329	032,230	24.7	20.1	RC	Sonne North
F1107	214,404	832 235	33.7	41 O	RC	Sonne North
F1103	214,437	832,231	45.0	61.7	RC	Sonne North
F1104	214,455	832,217	52.0	66.2	RC	Sonne North
F1105	214,474	832,199	49.6	61.7	RC	Sonne North
F1198	213,966	832,538	16.8	32.7	RC	Sonne North
F1199	213,948	832,554	18.8	26.6	RC	Sonne North
F1200	213,906	832,534	23.7	25.1	RC	Sonne North
F1201	213,924	832,518	24.9	38.8	RC	Sonne North
F1202	213,941	832,505	20.2	40.3	RC	Sonne North
F1203 F1204	213,922	032,404 832 470	21.9 17.5	39.0 33.3	RC	Sonne North
F1204	213,940	832,470	14.3	28.1	RC	Sonne North
F1206	213,905	832.501	25.5	41.8	RC	Sonne North
F1207	213,888	832,519	24.7	28.1	RC	Sonne North
F1208	213,871	832,500	23.1	46.4	RC	Sonne North
F1209	213,890	832,480	23.6	47.9	RC	Sonne North
F1210	213,907	832,461	20.0	38.8	RC	Sonne North
F1211	213,928	832,437	17.4	28.1	RC	Sonne North
F1212	213,946	832,422	17.4	27.1	RC	Sonne North
F1213	213,965	832,406	16.7	23.6	RC	Sonne North
F1214 F1215	213,949	832,398	18.8	25.1	RC	Sonne North
F1215	213,920	832 427	22.0	29.0	RC	Sonne North
F1217	213,893	832,442	22.0	34.2	RC	Sonne North
F1218	213.956	832.413	17.6	23.1	RC	Sonne North
F1219	213,914	832,525	23.4	27.3	RC	Sonne North
F1220	213,853	832,480	19.1	38.8	RC	Sonne North
F1221	213,875	832,462	21.7	44.9	RC	Sonne North
F1222	214,002	832,345	12.8	28.1	RC	Sonne North
F1223	213,985	832,363	14.8	19.9	RC	Sonne North
F1224	213,969	832,379	16.0	22.0	RC	Sonne North
F1225	213,979	832 385	14.5	15.0	RC	Sonne North
F1227	214,001	832,372	12.2	17.5	RC	Sonne North
F1228	213,979	832,371	15.3	22.0	RC	Sonne North
F1229	213,994	832,354	13.7	20.5	RC	Sonne North
F1230	214,005	832,315	12.0	31.2	RC	Sonne North
F1231	213,987	832,331	15.2	32.7	RC	Sonne North
F1232	213,969	832,347	18.7	28.1	RC	Sonne North
F1233	213,950	832,365	21.5	29.6	RC	Sonne North
F1234	213,933	832,380	23.5	31.2	RC	Sonne North
F1230 F1236	213,909	832,390 832 /12	24.1	29.0	RC	Sonne North
F1230	213,035	832 430	24.1	36.4	RC	Sonne North
F1238	213.856	832.446	21.5	39.5	RC	Sonne North
F1239	213,838	832,463	16.9	34.2	RC	Sonne North
F1240	213,822	832,446	16.3	22.0	RC	Sonne North
F1241	213,806	832,428	14.7	34.2	RC	Sonne North
F1242	213,842	832,426	21.6	37.8	RC	Sonne North
F1243	213,858	832,411	26.6	31.7	RC	Sonne North
F1244	213,879	832,387	31.5	33.2	RC	Sonne North
F1245	213,899	832,373	31.6	34.2	RC DC	Sonne North
F1240 F12/7	213,918	032,300 832 340	33.0 27 7	38.8 17 0		Sonne North
F1248	213,940	832 320	21.7	37.9	RC	Sonne North
F1249	213,977	832.304	16.8	44.9	RC	Sonne North
F1250	213.970	832,280	15.1	35.7	RC	Sonne North
F1251	213,952	832,297	18.6	40.3	RC	Sonne North
F1252	213,937	832,311	24.9	31.2	RC	Sonne North
F1253	213,916	832,328	34.7	40.3	RC	Sonne North
F1254	213,895	832,344	35.6	44.9	RC	Sonne North

SRK Consulting
3CS024.001 – Takara Resources Inc.
Resource Estimation Technical Report, Tassawini-Sonne Au Project, Guyana

Hole ID	Easting	Northing	Elevation	Length	Hole Type	Mineral Zone
F1255	213,878	832,364	32.5	41.8	RC	Sonne North
F1256	213,860	832,375	27.3	35.7	RC	Sonne North
F1257	213,839	832,392	22.6	29.6	RC	Sonne North
F1258	213,826	832,409	19.3	38.8	RC	Sonne North
F1259	213,788	832,441	12.6	32.7	RC	Sonne North
F1260	213,788	832,406	12.0	29.6	RC	Sonne North
F1261	213,805	832,389	14.3	29.6	RC	Sonne North
F1262	213,820	832,378	16.5	25.1	RC	Sonne North
F1263	213,838	832,305	18.0	29.6	RC	Sonne North
F1204	213,005	832 326	20.0	42.6	RC	Sonne North
F1266	213,902	832,307	31.8	48.6	RC	Sonne North
F1267	213.919	832.295	28.6	41.8	RC	Sonne North
F1268	213,937	832,275	21.5	35.7	RC	Sonne North
F1269	213,955	832,260	15.0	31.7	RC	Sonne North
F1270	214,001	832,538	14.8	19.0	RC	Sonne North
F1289	214,438	832,286	40.6	37.3	RC	Sonne North
F1290	214,415	832,306	31.7	40.3	RC	Sonne North
F1291	214,413	832,367	18.3	32.7	RC	Sonne North
F1292	214,423	832,359	18.3	28.1	RC	Sonne North
F1293	214,432	832,350	17.8	32.7	RC	Sonne North
F1294	214,442	032,343 822 220	17.0	31.Z 25.1	RC	Sonne North
F1295	214,429	832 328	19.9	25.1	RC	Sonne North
F1290	214,430	832 315	25.5	43.4	RC	Sonne North
F1298	214,459	832,329	23.5	50.1	RC	Sonne North
F1299	214,453	832.335	21.1	41.8	RC	Sonne North
F1300	214,396	832,328	26.6	37.8	RC	Sonne North
F1301	214,453	832,188	49.4	60.1	RC	Sonne North
F1302	214,435	832,204	47.8	52.5	RC	Sonne North
F1303	214,419	832,215	40.0	52.5	RC	Sonne North
F1304	213,899	832,276	23.7	35.7	RC	Sonne North
F1305	213,881	832,292	24.1	36.3	RC	Sonne North
F1306	213,863	832,307	19.8	31.2	RC	Sonne North
F1307	213,848	832,324	17.4	25.1	RC	Sonne North
F1306	213,974	032,441 832 /32	13.7	23.0	RC	Sonne North
F1310	213,903	832 402	16.0	25.1	RC	Sonne North
F1311	214.029	832,419	14.4	13.4	RC	Sonne North
F1312	214.069	832.388	18.2	31.2	RC	Sonne North
F1313	214,059	832,394	17.0	28.1	RC	Sonne North
F1314	214,037	832,409	14.8	16.5	RC	Sonne North
F1315	214,089	832,372	21.0	34.2	RC	Sonne North
F1316	214,108	832,356	23.0	32.7	RC	Sonne North
F1317	214,128	832,343	20.2	28.8	RC	Sonne North
F1318	214,146	832,325	17.0	28.1	RC	Sonne North
F1319	214,159	832,313	14.3	31.2	RC	Sonne North
F1320	214,003	832 421	25.9	34.Z 16.1	RC	Sonne North
F1322	214,003	832 435	20.5	31.2	RC	Sonne North
F1323	214,593	832,435	22.0	43.4	RC	Sonne North
F1324	214.581	832.420	16.8	23.6	RC	Sonne North
F1325	214,587	832,396	20.5	31.2	RC	Sonne North
F1436	214,480	832,327	57.5	38.8	RC	Sonne North
F1437	214,463	832,346	56.5	26.6	RC	Sonne North
F1438	214,472	832,336	57.0	28.1	RC	Sonne North
F1439	214,486	832,348	56.5	14.4	RC	Sonne North
F1440	214,494	832,338	57.0	26.6	RC	Sonne North
F1441	214,411	832,409	42.5	15.9	RC	Sonne North
F1442	214,449	832,403	56.5	20.5	RC DC	Sonne North
F1443 F1///	214,401 211 116	032,393 832 291	37.U 57.0	20.1		Sonna North
F1444 F1445	∠14,440 21 <i>4 1</i> 75	002,004 832 375	57.0	∠∪.⊃ 28.1		Sonne North
F145	214,475	832 565	20.0 23.8	54 0	RC	Sonne North
F146	214,412	832.522	45.4	51.0	RC	Sonne North
F147	214.430	832.512	46.2	54.0	RC	Sonne North
F151	214,466	832,550	48.3	57.1	RC	Sonne North
F152	214,474	832,524	49.0	60.1	RC	Sonne North
F153	214,476	832,493	44.4	51.0	RC	Sonne North
F154	214,486	832,471	43.1	49.5	RC	Sonne North

SRK Consulting
3CS024.001 – Takara Resources Inc.
Resource Estimation Technical Report, Tassawini-Sonne Au Project, Guyana

Hole ID	Easting	Northing	Elevation	Length	Hole Type	Mineral Zone
F155	214,487	832,447	36.3	38.8	RC	Sonne North
F156	214,428	832,461	24.4	34.2	RC	Sonne North
F157	214,382	832,588	34.3	40.3	RC	Sonne North
F255	214,347	832,265	32.2	34.2	RC	Sonne North
F256	214,333	832,287	34.5	41.8	RC	Sonne North
F257	214,320	832,303	35.1	44.9	RC	Sonne North
F258	214,371	832,252	35.8	38.8	RC	Sonne North
F259	214,293	832,319	31.5	38.8	RC	Sonne North
F260 F261	214,270	032,332 832 300	20.0 31.0	20.0 37.3	RC	Sonne North
F262	214,277	832,300	27.5	23.6	RC	Sonne North
F263	214,245	832,297	24.8	20.5	RC	Sonne North
F264	214.261	832.311	27.5	28.1	RC	Sonne North
F265	214,263	832,347	21.3	25.1	RC	Sonne North
F266	214,243	832,332	18.4	23.6	RC	Sonne North
F267	214,223	832,311	15.3	20.5	RC	Sonne North
F268	214,428	832,538	51.2	70.8	RC	Sonne North
F269	214,446	832,528	52.4	72.3	RC	Sonne North
F270	214,384	832,572	40.2	54.0	RC	Sonne North
F2/1	214,406	832,590	30.3	44.7	RC	Sonne North
F272	214,385	832,609	23.6	30.1	RC	Sonne North
F273 E274	214,304	032,002	22.0	31.2	RC	Sonne North
F274	214,342	832 555	21.3	34.Z 47.0	RC RC	Sonne North
F276	214,373	832 584	33.4	46.4	RC	Sonne North
F277	214,397	832,542	41.6	51.2	RC	Sonne North
F278	214,416	832.556	48.6	61.7	RC	Sonne North
F279	214,464	832,507	46.9	61.7	RC	Sonne North
F280	214,451	832,493	39.2	54.0	RC	Sonne North
F281	214,492	832,496	42.3	51.0	RC	Sonne North
F282	214,508	832,482	39.1	49.5	RC	Sonne North
F336	214,420	832,475	25.1	37.1	RC	Sonne North
F337	214,399	832,491	27.0	37.3	RC	Sonne North
F338	214,379	832,506	26.5	32.7	RC	Sonne North
F339	214,361	832,521	22.5	34.2	RC	Sonne North
F340 F341	214,342	832,539	19.0	35.7	RC	Sonne North
F341	214,337	832 555	21.4	29.7	RC RC	Sonne North
F343	214,305	832,569	13.5	14.4	RC	Sonne North
F344	214.324	832.387	18.0	23.6	RC	Sonne North
F345	214,307	832,404	12.5	19.0	RC	Sonne North
F346	214,271	832,428	13.4	22.0	RC	Sonne North
F347	214,231	832,461	15.0	23.6	RC	Sonne North
F348	214,209	832,478	14.6	20.5	RC	Sonne North
F349	214,188	832,496	13.0	23.6	RC	Sonne North
F350	214,148	832,524	12.8	20.5	RC	Sonne North
F351	214,130	832,538	15.5	20.5	RC	Sonne North
F352	214,111	832,555	18.0	29.7	RC	Sonne North
F353 F254	214,094	832,571	22.7	23.0	RC	Sonne North
F354	214,070	832,505	10/	25.1	RC RC	Sonne North
F356	214,001	832 593	20.7	35.7	RC	Sonne North
F357	214,082	832,579	22.6	29.7	RC	Sonne North
F358	214,121	832,547	16.6	25.1	RC	Sonne North
F359	214,139	832,530	13.6	14.4	RC	Sonne North
F360	214,168	832,509	11.0	25.1	RC	Sonne North
F361	214,181	832,502	12.3	20.5	RC	Sonne North
F362	214,199	832,489	13.8	17.5	RC	Sonne North
F363	214,220	832,469	15.3	20.5	RC	Sonne North
F364	214,241	832,451	12.8	19.0	RC	Sonne North
F365	214,255	832,438	11.6	11.4	RC	Sonne North
F300 F267	214,281	832,422	12.2	17.5	RC	Sonne North
F307	∠14,290 211 212	032,401 832 305	11.Z	10.9		Sonne North
F369	214,313 214 331	832 374	20.6	28.5	RC	Sonne North
F370	214,344	832,338	31.9	47.9	RC	Sonne North
F371	214.140	832.394	21.7	31.9	RC	Sonne North
F372	214,116	832,414	31.7	40.6	RC	Sonne North
F373	214,100	832,428	33.8	47.9	RC	Sonne North
F374	214,082	832,446	30.7	41.8	RC	Sonne North

SRK Consulting
3CS024.001 – Takara Resources Inc.
Resource Estimation Technical Report, Tassawini-Sonne Au Project, Guyana

Hole ID	Easting	Northing	Elevation	Length	Hole Type	Mineral Zone
F375	214,062	832,463	27.7	38.8	RC	Sonne North
F376	214,043	832,477	21.1	29.7	RC	Sonne North
F377	214,021	832,496	16.1	26.6	RC	Sonne North
F378	214,006	832,510	13.4	22.0	RC	Sonne North
F379	213,986	832,523	14.0	17.5	RC	Sonne North
F380	213,996	832,514	12.7	19.5	RC	Sonne North
F381	214,012	832,504	14.3	22.0	RC	Sonne North
F382	214,030	832,488	17.3	23.6	RC	Sonne North
F383 E294	214,316	832,501	14.7	20.5	RC	Sonne North
F385	214,332	832,545	28.5	31.2 41.8	RC	Sonne North
F386	214,425	832,569	41.1	51.0	RC	Sonne North
F387	214.258	832,594	13.4	22.0	RC	Sonne North
F388	214,246	832,613	18.0	31.2	RC	Sonne North
F389	214,234	832,626	20.4	34.2	RC	Sonne North
F489	214,348	832,310	38.4	55.6	RC	Sonne North
F490	214,367	832,299	41.4	47.9	RC	Sonne North
F491	214,368	832,290	39.0	41.8	RC	Sonne North
F492	214,387	832,280	41.3	43.4	RC	Sonne North
F493	214,410	832,270	42.9	55.6	RC	Sonne North
F494 E405	214,282	832,531	15.0	28.1	RC	Sonne North
F495	214,299	832,550	10.0	20.1	RC RC	Sonne North
F490	214,309	832,340	45.5	70.8	RC	Sonne North
F498	214,461	832.254	50.6	72.3	RC	Sonne North
F499	214.483	832.242	52.0	73.8	RC	Sonne North
F500	214,596	832,244	40.3	51.0	RC	Sonne North
F501	214,618	832,239	41.6	54.6	RC	Sonne North
F502	214,641	832,228	44.1	54.0	RC	Sonne North
F554	214,388	832,495	26.9	37.3	RC	Sonne North
F555	214,412	832,481	25.3	38.8	RC	Sonne North
F556	214,388	832,451	17.7	26.6	RC	Sonne North
F557	214,375	832,464	18.0	37.3	RC	Sonne North
F558 E550	214,359	832,469	17.0	29.7	RC	Sonne North
F509 F560	214,347	032,402 832 /02	10.0	17.5	RC	Sonne North
F561	214,333	832 499	16.5	18.4	RC	Sonne North
F562	214.313	832.510	19.1	17.5	RC	Sonne North
F563	214,300	832,518	17.5	23.6	RC	Sonne North
F564	214,298	832,482	17.7	23.5	RC	Sonne North
F565	214,371	832,437	21.8	26.6	RC	Sonne North
F566	214,316	832,469	16.2	19.0	RC	Sonne North
F567	214,327	832,462	16.3	28.4	RC	Sonne North
F568	214,337	832,455	16.0	23.6	RC	Sonne North
F569	214,348	832,447	15.8	23.0	RC	Sonne North
F570 E571	214,309	032,443	15.0	24.0	RC	Sonne North
F572	214,370	832 433	15.8	22.0	RC	Sonne North
F573	214,392	832,424	15.3	26.6	RC	Sonne North
F574	214,402	832,418	15.2	14.4	RC	Sonne North
F575	214,405	832,443	18.5	30.9	RC	Sonne North
F576	214,415	832,436	18.3	31.0	RC	Sonne North
F577	214,283	832,468	16.4	23.6	RC	Sonne North
F578	214,291	832,462	17.4	19.0	RC	Sonne North
F579	214,301	832,453	19.4	26.6	RC	Sonne North
F580	214,312	832,446	18.1	25.1	RC	Sonne North
F581 E592	214,322	832,439	17.6	25.1	RC	Sonne North
F583	214,203	832,440	17.0	25.1	RC	Sonne North
F584	214,305	832,425	16.6	22.0	RC	Sonne North
F585	214.297	832.369	18.9	20.5	RC	Sonne North
F586	214,327	832,348	25.8	32.7	RC	Sonne North
F587	214,317	832,355	23.3	23.6	RC	Sonne North
F588	214,308	832,361	21.1	26.6	RC	Sonne North
F589	214,284	832,345	23.3	28.1	RC	Sonne North
F590	214,293	832,339	25.8	25.2	RC	Sonne North
F591	214,305	832,334	28.1	29.7	RC	Sonne North
F592	214,314	832,328	30.8	29.7	RC	Sonne North
F393 F504	214,332	032,318	35.4	31.3	RC PC	Sonne North
F094	∠14,445	032,249	48.0	04.7	KU	Sonne North

SRK Consulting
3CS024.001 – Takara Resources Inc.
Resource Estimation Technical Report, Tassawini-Sonne Au Project, Guyana

Hole ID	Easting	Northing	Elevation	Length	Hole Type	Mineral Zone
F595	214,459	832,270	48.3	67.8	RC	Sonne North
F596	214,492	832,306	35.5	61.7	RC	Sonne North
F597	214,476	832,289	43.4	61.7	RC	Sonne North
F598	214,483	832,258	48.5	66.0	RC	Sonne North
F599	214,468	832,238	52.7	64.7	RC	Sonne North
F600 F601	214,400	832 248	21.0 /8.2	69.3 66.2	RC	Sonne North
F602	214,519	832.259	44.0	55.6	RC	Sonne North
F603	214,489	832,542	40.9	55.6	RC	Sonne North
F604	214,478	832,552	44.0	58.6	RC	Sonne North
F711	214,563	832,260	41.6	66.2	RC	Sonne North
F712	214,535	832,241	44.7	72.3	RC	Sonne North
F713	214,359	832,276	36.7	38.8	RC	Sonne North
F714 E715	214,368	832,323	35.3	48.7	RC	Sonne North
F715 F716	214,405	832,290	28.4	43.4 28.6	RC	Sonne North
F717	214,322	832.265	27.1	34.2	RC	Sonne North
F718	214,300	832,287	29.8	37.3	RC	Sonne North
F719	214,289	832,265	23.5	32.7	RC	Sonne North
F720	214,310	832,249	21.9	25.7	RC	Sonne North
F721	214,280	832,231	21.7	23.6	RC	Sonne North
F722	214,296	832,214	26.7	25.8	RC	Sonne North
F723	214,318	832,225	25.3 21.2	23.0	RC	Sonne North
F724 F725	214,232	832,209	21.2	21.7 19.0	RC	Sonne North
F726	214,247	832.261	21.4	17.5	RC	Sonne North
F727	214,211	832,511	17.4	32.7	RC	Sonne North
F728	214,194	832,535	19.4	46.1	RC	Sonne North
F729	214,177	832,556	18.7	32.3	RC	Sonne North
F730	214,169	832,522	12.1	26.6	RC	Sonne North
F731	214,191	832,759	26.5	43.1	RC	Sonne North
F732 F733	214,212	832,739	23.2 21.7	25.1	RC	Sonne North
F734	214,221	832 723	21.7	20.5	RC	Sonne North
F735	214,241	832,715	20.6	19.0	RC	Sonne North
F736	214,250	832,707	20.7	17.5	RC	Sonne North
F737	214,258	832,699	20.1	17.2	RC	Sonne North
F738	214,270	832,691	17.0	20.5	RC	Sonne North
F739	214,281	832,685	14.9	15.9	RC	Sonne North
F740 E741	214,290	832,070	13.0	20.5	RC	Sonne North
F742	214,105	832 731	25.8	43.4	RC	Sonne North
F743	214,197	832.714	20.8	25.1	RC	Sonne North
F744	214,206	832,705	19.9	15.7	RC	Sonne North
F745	214,217	832,699	18.8	17.5	RC	Sonne North
F746	214,227	832,691	17.1	15.9	RC	Sonne North
F747	214,238	832,683	16.1	11.4	RC	Sonne North
F748	214,247	832,673	15.7	18.2	RC	Sonne North
F749 F750	214,257	832,657	14.0	4.4 17.5	RC	Sonne North
F751	214.281	831.769	9.9	34.2	RC	Sonne North
F752	214,326	831,743	13.0	40.3	RC	Sonne North
F753	214,294	831,705	11.1	44.9	RC	Sonne North
F754	214,190	832,580	25.2	31.2	RC	Sonne North
F755	214,211	832,564	23.9	35.7	RC	Sonne North
F756	214,230	832,549	18.9	49.5	RC	Sonne North
F758	214,254	832,584	12.8	37.3	RC	Sonne North
F759	214,233	832,614	24.2	34.2	RC	Sonne North
F760	214,202	832,626	26.5	40.3	RC	Sonne North
F829	214,503	832,510	34.7	51.0	RC	Sonne North
F830	214,453	832,554	48.4	61.7	RC	Sonne North
F831	214,456	832,568	40.7	47.9	RC	Sonne North
F832	214,360	832,555	28.3	44.9	RC	Sonne North
F833	214,379	832,535	31.5	46.4	RC DC	Sonne North
г 034 F835	214,391 214 412	832,512	33.1 35.6	43.4 54 0	RC PC	Sonne North
F836	214,412	832 493	36.8	51.0	RC	Sonne North
F837	214.521	832.493	33.0	52.5	RC	Sonne North
F838	214,236	832,487	13.8	32.7	RC	Sonne North

SRK Consulting
3CS024.001 – Takara Resources Inc.
Resource Estimation Technical Report, Tassawini-Sonne Au Project, Guyana

Hole ID	Easting	Northing	Elevation	Length	Hole Type	Mineral Zone
F839	214,225	832,525	17.6	25.1	RC	Sonne North
F840	214,245	832,537	15.4	23.6	RC	Sonne North
F841	214,242	832,511	14.0	29.7	RC	Sonne North
F842	214,226	832,498	15.3	37.3	RC	Sonne North
F843	214,400	832,468	20.5	32.7	RC	Sonne North
F844	214,385	832,479	20.9	32.7	RC	Sonne North
F845	214,371	832,492	21.2	30.3	RC	Sonne North
F840	214,343	832,510	18.9	31.9	RC	Sonne North
F047 F848	214,331	032,520 832 531	17.7	20.1	RC	Sonne North
F849	214,313	832 508	14.0	19.0	RC	Sonne North
F850	214,272	832,487	12.7	19.0	RC	Sonne North
F851	214.479	832,482	44.5	61.7	RC	Sonne North
F852	214,265	832,316	27.5	29.7	RC	Sonne North
F853	214,271	832,273	26.8	31.2	RC	Sonne North
F856	214,097	832,701	29.3	27.2	RC	Sonne North
F857	214,116	832,684	28.7	41.8	RC	Sonne North
F858	214,142	832,674	33.5	41.4	RC	Sonne North
F859	214,165	832,657	31.0	38.2	RC	Sonne North
F860	214,183	832,642	26.8	22.8	RC	Sonne North
F861	214,171	832,596	24.6	38.1	RC	Sonne North
F002	214,149	032,007	22.3	19.0	RC	Sonne North
F003	214,130	032,023	21.0	20.1	RC	Sonne North
F865	214,107	832,652	23.9	31.2	RC	Sonne North
F866	214,000	832 668	20.0	20.5	RC	Sonne North
F867	214.053	832.650	22.4	22.0	RC	Sonne North
F868	214,038	832,628	20.6	13.8	RC	Sonne North
F869	214,080	832,660	22.7	19.0	RC	Sonne North
F870	214,103	832,647	25.1	29.7	RC	Sonne North
F871	214,119	832,629	21.9	28.7	RC	Sonne North
F872	214,138	832,614	21.1	23.6	RC	Sonne North
F873	214,161	832,603	23.6	28.1	RC	Sonne North
F874	214,181	832,588	25.1	47.9	RC	Sonne North
F875	214,072	832,630	21.5	19.0	RC	Sonne North
F8/6 E977	214,086	832,626	22.3	30.7	RC	Sonne North
F878	214,095	832 611	21.0	25.1	RC RC	Sonne North
F879	214,105	832 602	17.3	32.7	RC	Sonne North
F880	214,126	832,594	16.1	29.7	RC	Sonne North
F881	214,134	832,583	15.0	20.5	RC	Sonne North
F882	214,145	832,577	16.0	25.7	RC	Sonne North
F883	214,157	832,569	16.0	24.6	RC	Sonne North
F884	214,166	832,561	17.0	31.2	RC	Sonne North
F885	214,151	832,420	18.4	17.5	RC	Sonne North
F886	214,130	832,437	27.2	34.2	RC	Sonne North
F887	214,111	832,453	29.6	47.9	RC	Sonne North
F888	214,093	832,466	26.9	43.4	RC	Sonne North
F889	214,072	832,482	25.1	46.4	RC	Sonne North
F801	214,031	832,500	20.9	29.7	RC RC	Sonne North
F892	214,001	832 527	15.6	26.6	RC	Sonne North
F893	213.984	832,546	14.9	29.7	RC	Sonne North
F894	214,044	832,507	19.6	29.7	RC	Sonne North
F895	214,002	832,562	16.8	31.2	RC	Sonne North
F896	214,021	832,546	17.8	29.7	RC	Sonne North
F897	214,043	832,533	20.1	24.1	RC	Sonne North
F898	214,062	832,518	23.4	38.8	RC	Sonne North
F899	214,084	832,503	23.4	46.4	RC	Sonne North
F900	214,104	832,488	18.7	40.3	RC	Sonne North
F901	214,125	832,474	19.6	40.3	KC DO	Sonne North
F902	214,146	832,459	19.3	38.8	RC	Sonne North
F903	∠14,100 214 012	032,44 I 832 551	10.0	∠0.1 32.7		Sonne North
F905	214 032	832 540	18.4	26.6	RC	Sonne North
F906	214.053	832.526	21.7	34.2	RC	Sonne North
F907	214,175	832,461	12.8	13.9	RC	Sonne North
F908	214,157	832,479	14.5	31.2	RC	Sonne North
F909	214,138	832,495	14.3	31.2	RC	Sonne North
F910	214,119	832,511	17.8	33.7	RC	Sonne North

SRK Consulting
3CS024.001 – Takara Resources Inc.
Resource Estimation Technical Report, Tassawini-Sonne Au Project, Guyana

Hole ID	Easting	Northing	Elevation	Length	Hole Type	Mineral Zone
F911	214,100	832,524	22.6	41.8	RC	Sonne North
F912	214,080	832,541	25.6	47.9	RC	Sonne North
F913	214,062	832,553	22.7	40.3	RC	Sonne North
F914	214,041	832,565	19.8	33.7	RC	Sonne North
F915	214,027	832,578	18.7	30.7	RC	Sonne North
F916	213,962	832,488	14.0	28.1	RC	Sonne North
F917 F918	213,992	832,470	11.0	22.0	RC	Sonne North
F919	214,002	832,403	15.2	19.0	RC	Sonne North
F920	214,025	832.431	21.3	31.2	RC	Sonne North
F921	214,058	832,418	22.1	35.7	RC	Sonne North
F922	214,081	832,406	27.1	35.7	RC	Sonne North
F923	214,099	832,392	28.4	38.3	RC	Sonne North
F924	214,112	832,379	27.1	36.7	RC	Sonne North
F925	214,128	832,368	24.3	34.2	RC	Sonne North
F920 F027	214,010	032,430 922 457	14.9	19.0	RC	Sonne North
F928	214,008	832 722	26.8	47.9	RC	Sonne North
F929	214,152	832,709	27.8	43.4	RC	Sonne North
F930	214,170	832,694	28.3	41.3	RC	Sonne North
F931	214,189	832,677	24.0	23.0	RC	Sonne North
F932	214,210	832,663	21.3	14.4	RC	Sonne North
F933	214,228	832,649	19.8	14.4	RC	Sonne North
F934	214,201	832,669	21.8	14.4	RC	Sonne North
F935	214,220	832,655	20.7	19.0	RC	Sonne North
F930 F037	214,239	832,638	17.6	24.7	RC	Sonne North
F938	214,134	832,000	13.1	20.1	RC	Sonne North
F939	214,297	832,492	14.7	15.9	RC	Sonne North
F940	214,308	832,504	15.3	22.0	RC	Sonne North
F992	214,440	832,453	22.6	31.2	RC	Sonne North
F993	214,449	832,445	22.7	28.1	RC	Sonne North
F994	214,460	832,438	25.1	35.7	RC	Sonne North
F995	214,469	832,430	25.8	31.2	RC	Sonne North
F996	214,431	832,421	18.2	20.5	RC	Sonne North
F997	214,441	832 429	10.0	22.0	RC	Sonne North
F999	214,352	832,360	26.0	32.4	RC	Sonne North
SD297	214,119	831,983	21.2	101.5	DDH	Sonne South
SD299	214,147	832,026	25.5	101.5	DDH	Sonne South
SD302	214,181	832,063	23.2	101.5	DDH	Sonne South
SD303	214,143	832,094	15.8	101.5	DDH	Sonne South
SD305	214,149	832,061	24.7	99.6	DDH	Sonne South
SD306	214,114	832,024	21.5	101.5		Sonne South
SD307	214,107	832,039	17.4	101.5		Sonne South
SD311	214,053	831,908	13.2	101.5	DDH	Sonne South
SD312	214,021	831,906	21.3	101.5	DDH	Sonne South
SD314	214,057	831,870	17.6	101.5	DDH	Sonne South
SD315	214,021	831,875	27.7	101.5	DDH	Sonne South
SD370	214,101	832,000	19.1	41.5	DDH	Sonne South
SD371	214,099	832,003	19.0	86.5	DDH	Sonne South
SD372 SD373	214,098	832,004	19.0	50.5 80.5		Sonne South
SD373	214,123	832,044	22.5	56.5		Sonne South
SD375	214,130	832.043	22.2	65.5	DDH	Sonne South
SD376	214,031	831,893	21.4	86.5	DDH	Sonne South
SD377	214,031	831,895	21.3	89.5	DDH	Sonne South
SD381	213,618	832,065	46.5	125.5	DDH	Sonne South
SD382	213,590	832,088	39.1	125.5	DDH	Sonne South
SD383	213,674	832,144	27.6	128.5	DDH	Sonne South
5D384 SD385	213,620	832,195	18.9	128.5		Sonne South
SD386	213,797	832 123	22.0 16.0	119.5	HUU	Sonne South
SD387	213.985	832.203	12.7	106.5	DDH	Sonne South
SD406	214,011	831,910	21.5	80.5	DDH	Sonne South
SD407	213,562	832,114	32.0	137.5	DDH	Sonne South
SD408	213,611	832,127	37.0	143.5	DDH	Sonne South
SD409	213,635	832,106	40.0	125.5	DDH	Sonne South
SD410	213,571	832,042	35.0	122.7	DDH	Sonne South

SRK Consulting
3CS024.001 – Takara Resources Inc.
Resource Estimation Technical Report, Tassawini-Sonne Au Project, Guyana

Hole ID	Fasting	Northing	Flevation	l enath	Hole Type	Mineral Zone
SD411	213 533	832 012	28.0	125.5		Sonne South
SD412	213,498	831.976	30.5	131.2	DDH	Sonne South
F1010	214,079	831,996	15.0	11.4	RC	Sonne South
F1011	214,087	831,988	16.7	12.9	RC	Sonne South
F1012	214,097	831,979	19.3	19.0	RC	Sonne South
F1013	214,106	831,972	19.6	19.0	RC	Sonne South
F1014	214,116	831,966	19.4	18.4	RC	Sonne South
F1015	214,127	831,961	18.8	15.9	RC	Sonne South
F1016	214,112	832,020	21.0	12.9	RC	Sonne South
F1017	214,142	832,057	24.7	22.0	RC	Sonne South
F1060	214,400	632,046 832.058	32.3 31.0	40.3	RC	Sonne South
F1070	214,400	831 989	39.6	32.7	RC	Sonne South
F1071	214,427	831,978	40.1	32.7	RC	Sonne South
F1072	214.350	831.932	44.0	51.0	RC	Sonne South
F1073	214,337	831,943	42.0	47.9	RC	Sonne South
F1074	214,327	831,955	40.1	35.7	RC	Sonne South
F1075	214,265	831,871	21.7	31.2	RC	Sonne South
F1076	214,272	831,761	9.3	34.2	RC	Sonne South
F1077	214,287	831,776	11.3	28.1	RC	Sonne South
F1078	214,306	831,793	13.8	40.3	RC	Sonne South
F1079	214,324	831,778	12.0	31.2	RC	Sonne South
F1080	214,305	831,762	10.1	34.Z	RC	Sonne South
F1001 F1082	214,292	831,737	9.0 12.8	31.2	RC	Sonne South
F1083	214,343	831,856	12.0	25.1	RC	Sonne South
F1084	214,295	831.847	15.9	20.5	RC	Sonne South
F1085	214.039	831,890	18.9	20.5	RC	Sonne South
F1106	214,256	831,743	8.3	34.2	RC	Sonne South
F1107	214,276	831,719	10.1	15.9	RC	Sonne South
F1108	214,320	831,808	17.0	31.7	RC	Sonne South
F1109	214,337	831,795	13.5	35.7	RC	Sonne South
F1110	214,357	831,780	13.9	19.0	RC	Sonne South
F1111	214,177	832,100	17.4	14.4	RC	Sonne South
F1112 E1112	214,188	832,093	18.6	12.2	RC	Sonne South
F1113 F1114	214,190	832,000	20.0	0.8	RC	Sonne South
F1115	214,200	831 747	11.8	25.9	RC	Sonne South
F1116	214,000	831.735	13.9	34.2	RC	Sonne South
F1117	214,037	831,719	14.9	37.3	RC	Sonne South
F1118	214,061	831,735	11.4	34.2	RC	Sonne South
F1119	214,035	831,754	10.7	21.4	RC	Sonne South
F1120	214,070	831,759	9.3	15.4	RC	Sonne South
F1121	214,051	831,775	9.1	11.4	RC	Sonne South
F1122	214,014	831,771	11.9	21.4	RC	Sonne South
F1123	214,032	831,790	12.9	11.0	RC	Sonne South
F1124 F1125	213,940	831.842	26.0	37.3 28.1	RC	Sonne South
F1126	213,920	831 856	20.9	38.8	RC	Sonne South
F1127	213,930	831,810	18.9	32.0	RC	Sonne South
F1128	213,913	831,824	19.5	20.5	RC	Sonne South
F1129	213,897	831,838	23.1	31.2	RC	Sonne South
F1130	213,877	831,820	25.1	34.2	RC	Sonne South
F1131	213,895	831,803	26.0	37.3	RC	Sonne South
F1132	213,914	831,786	22.5	45.4	RC	Sonne South
F1133	213,901	832,065	30.1	47.9	RC	Sonne South
F1134	213,882	832,081	26.9	36.3	RC	Sonne South
F1130 E1126	213,002	032,090	20.4	37.3	RC	Sonne South
F1130	213,913 213 804	832,007	19.7	20.0 28.1	RC	Sonne South
F1138	213,877	832,121	16.3	29.7	RC	Sonne South
F1139	213.809	832.088	24.8	36.5	RC	Sonne South
F1140	213,790	832,107	19.5	35.7	RC	Sonne South
F1141	213,772	832,124	17.1	20.5	RC	Sonne South
F1142	213,755	832,140	16.7	19.9	RC	Sonne South
F1143	213,720	832,171	17.7	15.9	RC	Sonne South
F1144	213,697	832,190	24.0	17.5	RC	Sonne South
F1145	213,688	832,198	23.6	17.3	RC	Sonne South
F1140	213,00/	032,217	18.4	12.9	RU BC	Sonne South
Г114/	∠13,045	032,172	23.9	21./	KU	Source South

SRK Consulting
3CS024.001 – Takara Resources Inc.
Resource Estimation Technical Report, Tassawini-Sonne Au Project, Guyana

Hole ID	Fasting	Northing	Elevation	l enath	Hole Type	Mineral Zone
F1148	213,664	832,155	28.1	23.6	RC	Sonne South
F1149	213,681	832,137	27.3	25.1	RC	Sonne South
F1150	213,699	832,120	27.4	28.1	RC	Sonne South
F1151	213,718	832,103	27.1	38.8	RC	Sonne South
F1152	213,737	832,086	24.7	26.6	RC	Sonne South
F1153	213,756	832,069	21.1	41.0	RC	Sonne South
F1154 F1155	213,774	832,000	23.0	47.9 54.0	RC	Sonne South
F1156	213,831	832,070	37.5	51.0	RC	Sonne South
F1157	213,821	832,079	33.0	44.9	RC	Sonne South
F1158	213,772	832,014	25.6	47.1	RC	Sonne South
F1159	213,753	832,032	23.9	51.0	RC	Sonne South
F1160	213,735	832,049	24.3	38.8	RC	Sonne South
F1161	213,718	832,066	28.8	41.8	RC	Sonne South
F1162 F1163	213,698	832,083	33.8 36.8	38.8	RC	Sonne South
F1164	213,662	832,100	36.4	35.7	RC	Sonne South
F1165	213.641	832,136	32.7	29.7	RC	Sonne South
F1166	213,624	832,151	28.5	29.7	RC	Sonne South
F1167	213,756	831,995	17.8	32.7	RC	Sonne South
F1168	213,739	832,012	23.2	47.9	RC	Sonne South
F1169	213,723	832,029	27.1	54.0	RC	Sonne South
F1170	213,703	832,045	30.5	51.0	RC	Sonne South
F1171 F1172	213,683	832,062	37.4	67.8 46.4	RC	Sonne South
F1172	213,007	832,079	42.0	40.4	RC	Sonne South
F1174	213,618	832,066	47.1	52.5	RC	Sonne South
F1175	213,637	832,050	46.5	52.5	RC	Sonne South
F1176	213,656	832,032	41.3	69.3	RC	Sonne South
F1177	213,674	832,016	38.7	57.1	RC	Sonne South
F1178	213,693	832,001	29.3	41.8	RC	Sonne South
F1179	213,713	831,980	20.8	48.6	RC	Sonne South
F1180	213,731	831,966	26.3	55.6	RC	Sonne South
F1101 F1182	213,710	832 128	27.0	31.Z 25.7	RC	Sonne South
F1183	213,673	832 145	27.5	22.0	RC	Sonne South
F1184	213,654	832,164	26.1	20.1	RC	Sonne South
F1185	213,635	832,180	21.0	16.5	RC	Sonne South
F1186	213,627	832,189	18.9	19.0	RC	Sonne South
F1187	213,605	832,204	16.2	17.5	RC	Sonne South
F1188	213,659	832,224	16.6	11.4	RC	Sonne South
F1189	213,674	832,211	20.0	12.9	RC	Sonne South
F1190 F1101	213,002	832,203	22.9	0.5	RC	Sonne South
F1192	213,728	832,161	16.0	17.5	RC	Sonne South
F1193	213,735	832,153	15.7	19.7	RC	Sonne South
F1194	213,743	832,145	16.5	18.4	RC	Sonne South
F1195	213,764	832,133	16.7	15.9	RC	Sonne South
F1196	213,779	832,114	17.3	32.7	RC	Sonne South
F1197	213,997	832,005	11.0	19.0	RC	Sonne South
F1320 E1227	214,222	832,093	22.9	14.4	RC	Sonne South
F1328	214,214	832,100	19.2	12.9	RC	Sonne South
F1329	214,195	832.119	18.2	12.9	RC	Sonne South
F1330	214,189	832,126	17.5	11.4	RC	Sonne South
F1331	214,205	832,146	21.7	14.4	RC	Sonne South
F1332	214,213	832,139	22.6	14.4	RC	Sonne South
F1333	214,221	832,129	22.9	19.0	RC	Sonne South
F1334	214,230	832,120	23.8	17.5	RC	Sonne South
F1330	214,230 211 168	002,111 832 108	24.0 16.0	19.0		Sonne South
F1337	213 793	832 073	24.9	38.8	RC	Sonne South
F1338	213,822	832,103	33.5	34.2	RC	Sonne South
F1339	213,609	832,166	23.5	25.1	RC	Sonne South
F1340	213,590	832,182	17.5	25.1	RC	Sonne South
F1341	213,622	832,195	17.5	20.5	RC	Sonne South
F1342	213,619	832,221	15.7	14.4	RC	Sonne South
F1343 F1344	213,657 213,640	832,187 832 105	23.3	15.2	RC	Sonne South
F1345	213,049	832 205	∠1.0 18.7	13.9	RC	Sonne South
1 10-10	210,000	002,200	10.7	10.0	1.0	

SRK Consulting
3CS024.001 – Takara Resources Inc.
Resource Estimation Technical Report, Tassawini-Sonne Au Project, Guyana

Hole ID	Fasting	Northing	Flevation	l enath	Hole Type	Mineral Zone
F1346	213.628	832.213	16.3	14.5	RC	Sonne South
F1347	213.665	832,179	25.3	19.5	RC	Sonne South
F1348	213,672	832,172	26.4	20.5	RC	Sonne South
F1349	213,682	832,163	25.4	19.0	RC	Sonne South
F1350	213,691	832,156	23.6	19.0	RC	Sonne South
F1351	213,701	832,146	21.0	19.0	RC	Sonne South
F1352	213,711	832,138	19.8	17.5	RC	Sonne South
F1353	213,814	832,053	37.0	57.6	RC	Sonne South
F1354	213,832	832,037	41.4	72.3	RC	Sonne South
F1355	213,852	832,053	42.2	61.7	RC	Sonne South
F1350 E1257	213,835	832,066	38.0	70.8	RC	Sonne South
F1358	213,040	832,063	34.0	49.5	RC	Sonne South
F1350	213,668	832,009	39.0	69.3	RC	Sonne South
F1360	213,651	832,063	45.6	75.4	RC	Sonne South
F1361	213.633	832.080	45.2	49.5	RC	Sonne South
F1362	213,629	832,113	39.3	38.8	RC	Sonne South
F1363	213,610	832,127	36.3	40.3	RC	Sonne South
F1364	213,596	832,146	28.6	38.8	RC	Sonne South
F1365	213,577	832,163	22.0	32.7	RC	Sonne South
F1366	213,600	832,082	42.0	47.9	RC	Sonne South
F1367	213,581	832,098	38.0	47.0	RC	Sonne South
F1368	213,561	832,114	31.0	44.9	RC	Sonne South
F1369	213,568	832,073	35.2	52.5	RC	Sonne South
F1370	213,583	832,062	38.9	46.4	RC	Sonne South
F1371	213,603	832,046	44.0	51.0	RC	Sonne South
F1372	213,623	832,033	46.5	76.9	RC	Sonne South
F13/3 E1274	213,040	032,013 931.007	45.0	75.4	RC	Sonne South
F1374	213,020	832 015	40.2	70.8 51.0	RC RC	Sonne South
F1376	213,000	832,013	37.0	54.0	RC	Sonne South
F1377	213,550	832,031	35.0	48.8	RC	Sonne South
F1378	213,551	832.058	28.4	41.8	RC	Sonne South
F1379	213.533	832.080	29.6	38.8	RC	Sonne South
F1380	213,213	832,011	14.6	29.6	RC	Sonne South
F1381	213,227	832,027	17.0	31.2	RC	Sonne South
F1382	213,243	832,014	15.4	46.4	RC	Sonne South
F1383	213,233	831,995	13.5	37.3	RC	Sonne South
F1384	213,235	831,934	13.7	29.0	RC	Sonne South
F1385	213,237	831,900	15.8	34.9	RC	Sonne South
F1386	213,253	831,918	17.1	41.8	RC	Sonne South
F1387	213,178	831,910	12.9	19.0	RC	Sonne South
F1300	213,193	831,097	14.7	31.2	RC	Sonne South
F1309	213,212	831 885	17.5	31.2	RC	Sonne South
F1404	213,217	832 205	43.0	23.6	RC	Sonne South
F1405	214,000	832,183	43.0	26.6	RC	Sonne South
F1406	214.019	832,161	43.0	29.7	RC	Sonne South
F1407	213,964	832,224	43.0	26.6	RC	Sonne South
F1408	213,973	832,216	43.0	22.0	RC	Sonne South
F1409	213,991	832,193	43.0	22.0	RC	Sonne South
F1410	214,102	832,171	43.0	29.7	RC	Sonne South
F1411	214,029	832,153	43.0	26.6	RC	Sonne South
F1412	214,039	832,148	43.0	38.8	RC	Sonne South
F1413	214,065	832,138	44.5	25.1	RC	Sonne South
F1414	214,080	832,131	45.5	20.5	RC	Sonne South
F1415	214,117	832,133	46.0	13.6	RC	Sonne South
F1410	214,131	932,129	40.0	0.9	RC	Sonne South
F1418	214,143	832 112	40.0 40 N	9.0 14 4	RC	Sonne South
F1446	213 612	831 973	40.0 67 0	75.4	RC	Sonne South
F1447	213.596	831.955	67.0	76.9	RC	Sonne South
F1448	213,578	831,971	68.0	66.2	RC	Sonne South
F1449	213,594	831,990	68.0	64.7	RC	Sonne South
F1450	213,559	831,987	67.0	60.1	RC	Sonne South
F1451	213,540	832,002	66.0	40.3	RC	Sonne South
F1452	213,534	832,038	65.0	32.7	RC	Sonne South
F1453	213,554	832,022	66.0	37.3	RC	Sonne South
F1454	213,573	832,005	67.0	54.0	RC	Sonne South
F1455	214,205	832,179	47.0	12.9	RC	Sonne South

SRK Consulting
3CS024.001 – Takara Resources Inc.
Resource Estimation Technical Report, Tassawini-Sonne Au Project, Guyana

Hole ID	Easting	Northing	Elevation	Length	Hole Type	Mineral Zone
F1456	214,213	832,170	46.5	12.9	RC	Sonne South
F1457	214,222	832,162	46.0	12.1	RC	Sonne South
F1458	214,230	832,153	45.5	14.4	RC	Sonne South
F1459	214,239	832,144	45.0	18.0	RC	Sonne South
F1460	214,248	832,136	44.0	22.6	RC	Sonne South
F1461	214,258	832,127	43.0	24.1	RC	Sonne South
F1462	214,275	832,144	42.0	23.6	RC	Sonne South
F1463	214,267	832,153	42.5	23.6	RC	Sonne South
F1464	214,259	832,162	43.0	16.7	RC	Sonne South
F1405	214,230	832,170	44.0	14.4	RC RC	Sonne South
F1467	214,233	832,487	46.0	9.8	RC	Sonne South
F1468	214.224	832.165	47.5	9.8	RC	Sonne South
F1469	214,195	832,154	48.0	15.9	RC	Sonne South
F1470	214,179	832,134	49.5	11.4	RC	Sonne South
F1471	214,169	832,144	51.0	11.4	RC	Sonne South
F1472	214,186	832,163	50.0	12.9	RC	Sonne South
F390	214,023	831,895	23.9	32.1	RC	Sonne South
F391	214,038	831,876	22.0	29.7	RC	Sonne South
F392	214,051	831,863	19.0	22.0	RC	Sonne South
F393	214,062	831,850	17.5	17.5	RC	Sonne South
F394 F205	214,075	921 995	11.0	10.9	RC	Sonne South
F395	214,005	831,803	11.9	11.4	RC RC	Sonne South
F397	214,055	831 901	14.0	14.4	RC	Sonne South
F398	214,043	831 907	17.7	20.5	RC	Sonne South
F399	214.003	831.874	34.5	42.9	RC	Sonne South
F400	214,020	831,858	29.9	34.2	RC	Sonne South
F401	214,039	831,842	23.3	29.7	RC	Sonne South
F402	214,049	831,835	20.5	23.6	RC	Sonne South
F403	214,029	831,850	26.5	29.7	RC	Sonne South
F404	213,975	832,005	12.6	20.5	RC	Sonne South
F405	213,990	832,023	14.7	30.2	RC	Sonne South
F406	214,005	832,042	12.4	15.4	RC	Sonne South
F407	213,989	832,060	14.2	31.2	RC	Sonne South
F408	213,967	832,075	10.1	22.0	RC	Sonne South
F409 F410	213,949	832,091	20.0	35.7	RC	Sonne South
F411	213,956	832,021	20.2	37.8	RC	Sonne South
F412	213.953	832.058	23.0	26.6	RC	Sonne South
F413	213,932	832,072	22.4	31.2	RC	Sonne South
F414	213,917	832,054	31.9	41.8	RC	Sonne South
F415	213,933	832,037	30.9	49.5	RC	Sonne South
F416	214,150	832,049	26.3	25.8	RC	Sonne South
F417	214,135	832,063	23.3	18.4	RC	Sonne South
F418	214,135	832,033	25.3	26.1	RC	Sonne South
F419	214,113	832,043	20.5	15.9	RC	Sonne South
F420	214,101	832,026	18.5	10.6	RC	Sonne South
F421 F422	214,123	831 008	23.1	20.5	RC	Sonne South
F422	214,143	832 016	22.0	20.4	RC	Sonne South
F424	214,100	832.034	25.6	23.6	RC	Sonne South
F425	214.169	832.010	22.5	19.0	RC	Sonne South
F426	214,145	832,024	25.5	23.6	RC	Sonne South
F427	214,134	832,006	23.8	21.5	RC	Sonne South
F515	214,361	831,640	11.4	44.9	RC	Sonne South
F516	214,345	831,659	11.4	40.3	RC	Sonne South
F517	214,328	831,678	12.6	41.8	RC	Sonne South
F518	214,317	831,700	13.6	46.4	RC	Sonne South
F519	214,309	831,725	11.1	35.7	RC DC	Sonne South
	214,303	031,740	10.1	35.7	KC DC	Sonne South
F021 F522	214,201 214 244	001,194 821 812	0.01 0.2	20.0 22.0		Sonne South
F523	214,244	831 834	9.0 10.2	22.0 17 5	RC	Sonne South
F524	214,181	831.853	11.3	20.5	RC	Sonne South
F525	214.158	831.865	10.5	17.5	RC	Sonne South
F526	214,112	831,865	8.2	5.3	RC	Sonne South
F527	214,088	831,862	10.0	9.8	RC	Sonne South
F528	214,086	831,837	11.5	12.0	RC	Sonne South
F529	214,076	831,815	13.0	12.9	RC	Sonne South

SRK Consulting
3CS024.001 – Takara Resources Inc.
Resource Estimation Technical Report, Tassawini-Sonne Au Project, Guyana

Hole ID	Easting	Northing	Elevation	Length	Hole Type	Mineral Zone
F605	214,133	832,104	11.9	9.1	RC	Sonne South
F606	214,142	832,096	15.1	12.9	RC	Sonne South
F607	214,151	832,088	19.0	14.4	RC	Sonne South
F608	214,119	832,082	14.3	10.8	RC	Sonne South
F609	214,130	832,074	19.3	14.4	RC	Sonne South
F610	214,163	832,082	20.4	14.0	RC	Sonne South
F011 F612	214,172	832,074	21.0	19.0	RC	Sonne South
F613	214,101	832,000	23.0	23.6	RC	Sonne South
F614	214,199	832.048	23.5	21.1	RC	Sonne South
F615	214,208	832,039	22.4	17.9	RC	Sonne South
F616	214,219	832,033	21.1	15.9	RC	Sonne South
F617	214,225	832,026	19.7	14.4	RC	Sonne South
F618	214,213	832,007	18.7	11.4	RC	Sonne South
F619	214,204	832,015	20.8	17.1	RC	Sonne South
F620	214,194	832,022	22.1	16.7	RC	Sonne South
F021 F622	214,164	832,029	23.9	20.1	RC	Sonne South
F623	214,104	832,045	23.5	17.5	RC	Sonne South
F624	214,108	832,056	16.8	6.8	RC	Sonne South
F625	214,198	831,988	17.8	17.5	RC	Sonne South
F626	214,188	831,996	19.5	15.9	RC	Sonne South
F627	214,179	832,003	20.7	15.9	RC	Sonne South
F628	214,153	831,989	20.6	19.5	RC	Sonne South
F629	214,162	831,982	19.5	18.4	RC	Sonne South
F630	214,171	831,973	18.2	17.9	RC	Sonne South
F631	214,181	831,965	17.0	15.9	RC	Sonne South
F632	214,093	832,036	15.3	4.3	RC	Sonne South
F033 F624	214,112	032,010 931 079	21.2	10.0	RC	Sonne South
F635	214,129	831 972	19.6	17.5	RC	Sonne South
F636	214,147	831.963	18.1	15.6	RC	Sonne South
F637	214,155	831,952	16.9	16.7	RC	Sonne South
F638	214,166	831,947	16.2	15.9	RC	Sonne South
F639	214,081	832,013	13.5	11.4	RC	Sonne South
F640	214,089	832,007	18.7	9.2	RC	Sonne South
F641	214,099	832,001	19.9	15.6	RC	Sonne South
F642	214,109	831,994	20.8	19.0	RC	Sonne South
F643	214,120	831,987	21.3	19.5	RC	Sonne South
F645	214,110	831 946	15.1	11.4	RC	Sonne South
F646	214.097	831.954	15.9	15.9	RC	Sonne South
F647	214,087	831,961	15.5	17.5	RC	Sonne South
F648	214,077	831,968	13.9	13.7	RC	Sonne South
F649	214,083	831,937	10.0	11.4	RC	Sonne South
F650	214,092	831,929	10.0	8.3	RC	Sonne South
F651	214,101	831,920	10.0	7.7	RC	Sonne South
F652	214,018	831,876	29.5	30.5	RC	Sonne South
F653	214,438	832,067	27.0	20.0	RC	Sonne South
F034 F655	214,440	832,059	27.4	20.5	RC	Sonne South
F656	214,405	832,035	20.0	20.3	RC	Sonne South
F657	214.475	832.038	29.8	25.1	RC	Sonne South
F658	214,468	832,012	30.3	28.1	RC	Sonne South
F659	214,460	832,018	32.6	29.7	RC	Sonne South
F660	214,447	832,029	33.6	29.7	RC	Sonne South
F661	214,439	832,036	32.4	32.7	RC	Sonne South
F662	214,431	832,044	30.3	31.2	RC	Sonne South
F663	214,422	832,051	28.1	20.5	RC	Sonne South
F004 F665	214,444 211 122	032,002 832 000	30.U 26 5	3U.5 29 7		Sonne South
F666	214,400 214 228	821 017	30.0 28 8	20.1 11 2		Sonne South
F667	214,318	831.924	38.3	47.5	RC	Sonne South
F668	214,308	831,931	37.3	37.7	RC	Sonne South
F669	214,297	831,939	35.7	27.9	RC	Sonne South
F670	214,290	831,946	34.6	23.9	RC	Sonne South
F671	214,274	831,929	29.3	26.6	RC	Sonne South
F672	214,284	831,922	31.6	26.6	RC	Sonne South
F673	214,294	831,914	33.4	43.4	RC	Sonne South
F674	214,307	831,909	34.8	41.8	RC	Sonne South

SRK Consulting
3CS024.001 – Takara Resources Inc.
Resource Estimation Technical Report, Tassawini-Sonne Au Project, Guyana

Hole ID	Easting	Northing	Elevation	Length	Hole Type	Mineral Zone
F675	214,313	831,900	33.6	35.7	RC	Sonne South
F676	214,261	831,908	25.9	29.7	RC	Sonne South
F677	214,269	831,902	27.9	32.7	RC	Sonne South
F678	214,277	831,896	28.6	43.4	RC	Sonne South
F679	214,288	831,885	28.1	37.6	RC	Sonne South
F680	214,300	831,880	27.0	30.3	RC	Sonne South
F001	214,050	031,001 831 841	20.8	17.0	RC	Sonne South
SD015	214,049	832 130	20.0	169.0		Tassawini Fast
SD016	215,234	832,131	34.0	161.5	DDH	Tassawini East
SD017	215,240	832,087	35.6	131.0	DDH	Tassawini East
SD018	215,240	832,085	35.5	134.5	DDH	Tassawini East
SD019	215,215	832,093	37.2	156.0	DDH	Tassawini East
SD020	215,197	832,029	27.6	143.5	DDH	Tassawini East
SD021	215,197	832,029	27.6	158.5	DDH	Tassawini East
SD022	215,282	832,157	39.9	128.5		Tassawini East
SD023	215,201	832 183	40.0	120.0		Tassawini East
SD025	215,342	832,140	30.0	202.5	DDH	Tassawini East
SD026	215.267	832.038	32.4	163.0	DDH	Tassawini East
SD027	215,270	832,038	32.4	179.5	DDH	Tassawini East
SD028	215,332	832,116	29.9	223.5	DDH	Tassawini East
SD029	215,303	832,092	26.4	221.5	DDH	Tassawini East
SD030	215,305	832,092	26.4	204.5	DDH	Tassawini East
SD031	215,315	832,103	28.9	202.9	DDH	Tassawini East
SD033	215,286	832,069	30.7	178.5	DDH	Tassawini East
SD091	215,364	832,176	33.Z	67.0		Tassawini East
SD092	215,330	832,160	28.4	00.0 91 0		Tassawini East
SD109	215,325	832,218	41.5	128.5	DDH	Tassawini East
SD110	215,352	832,234	34.0	119.5	DDH	Tassawini East
SD112	215,367	832,214	27.4	97.0	DDH	Tassawini East
SD114	215,388	832,195	22.7	79.5	DDH	Tassawini East
SD172	215,143	832,009	21.2	130.5	DDH	Tassawini East
SD174	215,170	832,024	24.6	154.5	DDH	Tassawini East
SD176	215,131	831,991	17.9	154.5		Tassawini East
SD165	215,217	832,009	30.0	172.5		Tassawini East
SD187	215,264	832,150	43.8	163.5	DDH	Tassawini East
SD190	215,280	832,117	55.4	103.5	DDH	Tassawini East
SD192	215,309	832,130	52.1	100.5	DDH	Tassawini East
SD209	215,378	832,126	48.5	111.0	DDH	Tassawini East
SD211	215,377	832,126	48.4	136.0	DDH	Tassawini East
SD217	215,325	832,158	50.4	81.0	DDH	Tassawini East
SD219	215,311	832,175	46.2	111.0		Tassawini East
SD337	215,237	832,030	37.8	99.0 102.0		Tassawini East
SD333	215,191	831,992	35.3	82.5	DDH	Tassawini East
SD334	215,180	831,975	28.5	63.0	DDH	Tassawini East
SD335	215,248	832,120	39.0	130.5	DDH	Tassawini East
SD336	215,164	831,993	23.6	82.5	DDH	Tassawini East
SD337	215,183	832,008	24.9	75.0	DDH	Tassawini East
SD339	215,269	832,113	55.7	130.5	DDH	Tassawini East
SD341	215,316	832,200	37.3	121.5	DDH	Tassawini East
SD344 SD362	215,322	832,250	45.0 14.5	163.5	DDH	Tassawini East
SD363	215,155	831 920	14.5	79.0		Tassawini Lasi
SD366	215.031	831.846	43.5	131.2	DDH	Tassawini East
F1275	215,156	831,924	15.0	3.7	RC	Tassawini East
F1276	215,121	831,926	18.6	18.8	RC	Tassawini East
F1277	215,103	831,908	22.7	19.0	RC	Tassawini East
F1278	215,122	831,890	17.2	26.0	RC	Tassawini East
F1279	215,089	831,890	25.0	33.9	RC	Tassawini East
F1280	215,105	831,869	24.1	47.9	KC	Tassawini East
F1201	215,120	031,054	19.2	32.1	RC BC	Tassawini East
F1283	215,072	831 853	29 A	40.3 26 6	RC	Tassawini East
F1284	215.114	831.832	22.3	41.8	RC	Tassawini East
F1285	215,140	831,874	14.6	37.3	RC	Tassawini East
F1286	215,137	831,911	15.0	35.7	RC	Tassawini East

SRK Consulting
3CS024.001 – Takara Resources Inc.
Resource Estimation Technical Report, Tassawini-Sonne Au Project, Guyana

Hole ID	Fasting	Northing	Flevation	Length	Hole Type	Mineral Zone
F1287	215.182	831.916	14.6	23.6	RC	Tassawini East
F1288	215.162	831,934	14.8	31.2	RC	Tassawini East
F1434	215,291	831,882	56.5	67.8	RC	Tassawini East
F1435	215,292	831,881	56.5	49.5	RC	Tassawini East
F158	215,336	832,124	29.9	47.9	RC	Tassawini East
F159	215,313	832,092	26.5	38.8	RC	Tassawini East
F160	215,253	832,011	32.1	49.5	RC	Tassawini East
F161	215,234	831,986	32.1	60.1	RC	Tassawini East
F216	215,444	832,259	41.1	55.6	RC	Tassawini East
F217 F218	215,454	832,230	28.7	44.9 51.0	RC	Tassawini East
F219	215,490	832,236	29.5	44.9	RC	Tassawini East
F220	215,423	832.315	37.1	41.8	RC	Tassawini East
F221	215,525	832,397	47.6	41.8	RC	Tassawini East
F222	215,531	832,371	42.6	61.7	RC	Tassawini East
F223	215,536	832,347	36.4	54.0	RC	Tassawini East
F224	215,548	832,319	25.7	26.0	RC	Tassawini East
F225	215,481	832,321	25.9	61.7	RC	Tassawini East
F226	215,481	832,344	32.1	35.7	RC	Tassawini East
F227	215,456	832,375	38.8	57.1	RC	Tassawini East
F299 F300	215,105	831,990	24.4	61.7	RC	Tassawini East
F301	215,100	831 958	25.4	35.7	RC	Tassawini East
F302	215,240	831,994	26.4	17.5	RC	Tassawini East
F303	215,241	831,992	26.4	44.9	RC	Tassawini East
F304	215,393	832,173	23.9	40.3	RC	Tassawini East
F305	215,427	832,165	26.6	56.3	RC	Tassawini East
F306	215,301	832,198	38.9	40.3	RC	Tassawini East
F325	215,308	832,147	51.1	66.2	RC	Tassawini East
F326	215,326	832,158	50.4	76.9	RC	Tassawini East
F327	215,312	832,175	45.5	64.7	RC	Tassawini East
F328 F220	215,341	832,177	34.0	44.4 52.5	RC	Tassawini East
F329 F330	215,307	832 155	29.2	52.5 44 Q	RC	Tassawini Lasi
F428	215,174	831,947	19.4	49.5	RC	Tassawini East
F429	215,153	831,974	22.8	34.2	RC	Tassawini East
F430	215,212	832,011	41.5	60.1	RC	Tassawini East
F431	215,228	831,998	40.2	60.1	RC	Tassawini East
F434	215,179	832,013	23.1	36.7	RC	Tassawini East
F435	215,270	832,111	55.7	63.2	RC	Tassawini East
F436	215,287	832,121	55.9	66.2	RC	Tassawini East
F437	215,267	832,166	51.2	61.7	RC	Tassawini East
F440 F441	215,201	832,094	40.Z	61.0	RC	Tassawini East
F440	215,250	832,000	51.8	75.4	RC	Tassawini East
F450	215,268	832.132	50.6	75.8	RC	Tassawini East
F451	215.315	832,130	54.8	64.7	RC	Tassawini East
F452	215,259	832,049	56.6	78.4	RC	Tassawini East
F453	215,228	832,021	48.5	78.4	RC	Tassawini East
F454	215,210	831,975	34.7	46.4	RC	Tassawini East
F455	215,194	831,990	36.1	37.3	RC	Tassawini East
F456	215,340	831,998	54.9	78.9	RC	Tassawini East
F457	215,297	831,878	40.5	78.4 64.7	RC	Tassawini East
F430 F450	215,309	831 842	28.5	61.7	RC	Tassawini East
F460	215,323	831 826	20.0	46.4	RC	Tassawini East
F461	215.357	831.802	12.0	12.9	RC	Tassawini East
F462	215,373	831,959	26.3	54.0	RC	Tassawini East
F463	215,379	832,125	49.7	64.7	RC	Tassawini East
F464	215,400	832,110	41.5	69.3	RC	Tassawini East
F465	215,412	832,088	34.9	55.6	RC	Tassawini East
F466	215,426	832,069	26.9	57.1	RC	Tassawini East
F467	215,444	832,052	19.6	45.7	RC	Lassawini East
F468	215,316	831,994	56.4	81.5	RC	Tassawini East
F409	210,014	001,902 831 030	41.Z 11 0	01.0 91.5		Tassawini East
F475	215,300	831 912	44.2	81.5	RC	Tassawini East
F476	215,293	831.880	40.3	79.9	RC	Tassawini Fast
F477	215,379	832,126	49.8	81.5	RC	Tassawini East
F478	215,433	832,167	26.7	25.1	RC	Tassawini East

SRK Consulting
3CS024.001 – Takara Resources Inc.
Resource Estimation Technical Report, Tassawini-Sonne Au Project, Guyana

Hole ID	Easting	Northing	Elevation	Length	Hole Type	Mineral Zone
F479	215,405	832,176	23.8	49.5	RC	Tassawini East
F480	215,417	832,172	24.5	43.4	RC	Tassawini East
F481	215,385	832,183	23.4	38.8	RC	Tassawini East
F482	215,374	832,194	23.8	52.5	RC	Tassawini East
F483	215,355	832,152	30.4	40.3	RC	Tassawini East
F484	215,338	832,105	29.8	55.6	RC	Tassawini East
F485	215,314	832,076	26.4	55.6	RC	Tassawini East
F486	215,294	832,059	30.6	63.2	RC	Tassawini East
F487	215,276	832,034	32.5	78.4	RC	Tassawini East
F400 F530	210,247	831 622	20.2	57.1	RC	Tassawini East
F540	214,957	831 597	22.1	58.6	RC	Tassawini East
F541	215,152	831,783	12.7	22.0	RC	Tassawini East
F542	215,120	831,800	16.5	34.2	RC	Tassawini East
F543	215,091	831,817	23.9	55.6	RC	Tassawini East
F544	215,062	831,833	35.0	74.6	RC	Tassawini East
F545	215,031	831,848	42.6	79.9	RC	Tassawini East
F683	215,206	831,787	12.7	40.3	RC	Tassawini East
F684	215,237	831,776	17.7	24.3	RC	Tassawini East
F685	215,261	831,760	17.1	47.9	RC	Tassawini East
F686	215,289	831,757	16.3	43.4	RC	Tassawini East
F007	215,321	831,740 821,770	15.2	34.Z	RC	Tassawini East
F000 F680	215,540	831 020	17.9	20.0	RC	Tassawini East
F690	215,197	831 929	16.7	43.0 51.0	RC	Tassawini East
F698	215,179	831,976	28.5	43.4	RC	Tassawini East
F699	215.216	831.952	21.2	38.3	RC	Tassawini East
F700	215,141	831,985	17.2	32.7	RC	Tassawini East
F701	215,145	832,009	21.0	35.7	RC	Tassawini East
F702	215,145	831,965	17.3	23.6	RC	Tassawini East
F703	215,225	831,973	23.2	51.0	RC	Tassawini East
F706	215,210	831,976	34.6	28.1	RC	Tassawini East
F707	215,193	831,991	36.1	49.5	RC	Tassawini East
F708	215,258	832,048	56.5	73.8	RC	Tassawini East
F709	215,257	832,049	50.4 49 5	69.3 70.0	RC	Tassawini East
SD074	215,220	832,019	40.0	139.5		Tassawini South
SD075	214 953	831 974	55.5	122.9		Tassawini South
SD076	214,991	832.018	45.8	116.5	DDH	Tassawini South
SD077	215,035	832,035	42.0	120.0	DDH	Tassawini South
SD111	214,932	831,966	54.2	108.0	DDH	Tassawini South
SD113	214,970	831,981	48.6	99.0	DDH	Tassawini South
SD115	215,059	832,044	48.9	145.5	DDH	Tassawini South
SD121	215,012	832,031	42.9	84.0	DDH	Tassawini South
SD147	214,925	831,988	59.1	85.5	DDH	Tassawini South
SD149	214,947	831,996	59.9	87.0	DDH	Tassawini South
SD150	214,962	832,003	58.7	96.0		Tassawini South
SD152 SD152	214,900	921 051	44.2	60.0	חסס	Tassawini South
SD153	214,903	831 942	45.2	57.0		Tassawini South
SD155	215,067	832.017	26.6	89.4	DDH	Tassawini South
SD158	215.045	832.013	27.2	64.5	DDH	Tassawini South
SD160	215,024	832,006	26.7	76.5	DDH	Tassawini South
SD161	215,001	831,996	37.5	70.5	DDH	Tassawini South
SD163	215,080	831,993	18.1	55.5	DDH	Tassawini South
SD164	215,056	831,989	19.1	85.5	DDH	Tassawini South
SD166	215,103	832,004	18.7	93.0	DDH	Tassawini South
SD168	215,095	832,022	19.8	99.0	DDH	Tassawini South
SD170	215,030	831,979	23.7	76.5	DDH	Tassawini South
50171 90177	215,007	031,969	34.7	87.U	UDH	Tassawini South
SD170	210,000	032,004 832 077	52.9 61.2	121.0 150.0	חטט חטט	Tassawini South
SD180	215,047	832,077	64.6	109.0	אחח	Tassawini South
SD181	214,998	832.065	66.3	149.3	DDH	Tassawini South
SD182	214.974	832.058	70.0	138.5	DDH	Tassawini South
SD183	214,950	832,050	67.3	123.0	DDH	Tassawini South
SD184	214,925	832,043	59.4	123.0	DDH	Tassawini South
SD320	214,908	831,956	48.8	79.5	DDH	Tassawini South
SD321	214,901	831,983	52.7	76.5	DDH	Tassawini South
SD323	214,939	832,019	61.2	100.5	DDH	Tassawini South

SRK Consulting
3CS024.001 – Takara Resources Inc.
Resource Estimation Technical Report, Tassawini-Sonne Au Project, Guyana

Hole ID	Easting	Northing	Elevation	Lenath	Hole Type	Mineral Zone
SD326	214,968	832.003	54.5	91.5		Tassawini South
SD327	215.022	831.922	33.1	41.2	DDH	Tassawini South
SD328	215,014	831,945	30.0	42.0	DDH	Tassawini South
SD329	215,039	831,954	27.1	40.5	DDH	Tassawini South
SD330	215,064	831,959	22.7	30.0	DDH	Tassawini South
SD364	214,879	831,955	35.4	116.5	DDH	Tassawini South
SD365	214,858	831,978	28.1	104.5	DDH	Tassawini South
F127	215,129	832,080	56.8	51.0	RC	Tassawini South
F128	215,073	832,072	58.1	61.7	RC	Tassawini South
F148	215,033	832,077	64.1	60.1	RC	Tassawini South
F228	214,960	831,807	59.6	61.7	RC	Tassawini South
F229 F230	214,977	831 847	52.0 37.3	63.2	RC	Tassawini South
F231	215,002	831 870	37.3	44.9	RC	Tassawini South
F232	215.049	831.901	33.8	44.9	RC	Tassawini South
F233	215,031	831,926	30.9	34.2	RC	Tassawini South
F234	215,013	832,010	34.9	44.9	RC	Tassawini South
F235	215,002	831,987	33.8	61.7	RC	Tassawini South
F236	215,012	831,965	33.1	52.5	RC	Tassawini South
F283	215,033	831,958	28.2	37.3	RC	Tassawini South
F284	215,039	832,021	34.3	49.5	RC	Tassawini South
F285	215,047	832,002	24.9	41.8	RC	Tassawini South
F286	215,026	831,992	23.6	29.7	RC	Tassawini South
F287	214,981	832,051	65.7	63.2	RC	Tassawini South
F288	215,057	832,052	54.3	61.7	RC	Tassawini South
F209 F200	215,001	832,037	44.9	44.9 57.8	RC	Tassawini South
F291	215,003	832,001	49.0	51.0	RC	Tassawini South
F292	215,130	832,060	50.2	61.7	RC	Tassawini South
F293	215,162	832.038	36.3	51.0	RC	Tassawini South
F294	215,120	832,027	30.9	43.4	RC	Tassawini South
F295	215,139	832,039	40.7	55.6	RC	Tassawini South
F296	214,980	831,976	49.0	61.7	RC	Tassawini South
F297	214,972	832,002	54.2	63.2	RC	Tassawini South
F298	214,969	832,027	59.8	61.7	RC	Tassawini South
F331	215,063	832,026	33.1	34.2	RC	Tassawini South
F332	214,994	832,009	42.2	55.6	RC	Tassawini South
F333 F224	215,034	832,037	42.6	61.7	RC	Tassawini South
F335	215,013	831 077	42.4	/1.8	RC	Tassawini South
F432	215,000	832,060	50.6	66.2	RC	Tassawini South
F433	215,111	832.042	38.1	60.1	RC	Tassawini South
F442	214,948	831,912	52.5	61.7	RC	Tassawini South
F443	214,927	831,908	53.3	61.7	RC	Tassawini South
F444	214,910	831,949	49.4	61.7	RC	Tassawini South
F445	214,935	831,958	51.9	49.5	RC	Tassawini South
F446	214,939	831,940	48.5	55.6	RC	Tassawini South
F447	214,963	831,943	43.8	55.6	RC	Tassawini South
F448	214,985	831,962	45.0	46.4	RC	Tassawini South
F471	214,994	831,941	30.6	51.0	RC	Tassawini South
F472 F473	214,914	831.920	42.2	73.0 60.3	RC	Tassawini South
F473	215,013	831 963	26.4	46.4	RC	Tassawini South
F512	214,758	831,845	12.0	20.5	RC	Tassawini South
F513	214.736	831.832	10.6	17.5	RC	Tassawini South
F514	214,691	831,813	15.1	23.6	RC	Tassawini South
F530	214,781	831,833	15.8	17.5	RC	Tassawini South
F531	214,787	831,808	15.9	17.5	RC	Tassawini South
F532	214,774	831,789	12.9	22.0	RC	Tassawini South
F533	214,775	831,754	14.5	22.0	RC	Tassawini South
F534	214,784	831,732	16.9	20.5	RC	Tassawini South
F535	214,800	831,712	18.1	41.8	RC	Tassawini South
F536	214,821	831,696	19.3	40.3	RC DC	Tassawini South
F33/	214,031	031,002	10.0	25.1	KC PC	Tassawini South
F336	∠14,000 215 027	831 076	10.7	44.9 12 1		Tassawini South
F705	215,027	831 977	24.0	49.2	RC	Tassawini South
SD001	215,161	832,194	28.4	175.0	НОО	Tassawini West
SD002	215,208	832,210	29.8	175.0	DDH	Tassawini West
SD003	215,184	832,202	29.3	175.0	DDH	Tassawini West

SRK Consulting
3CS024.001 – Takara Resources Inc.
Resource Estimation Technical Report, Tassawini-Sonne Au Project, Guyana

Hole ID	Easting	Northing	Elevation	Lenath	Hole Type	Mineral Zone
SD004	215,152	832,219	27.7	175.0	DDH	Tassawini West
SD005	215,168	832,170	28.4	175.0	DDH	Tassawini West
SD006	215,136	832,186	31.4	170.5	DDH	Tassawini West
SD007	215,232	832,218	30.8	175.0	DDH	Tassawini West
SD008	215,229	832,225	30.5	173.5	DDH	Tassawini West
SD009	215,144	832,240	31.6	170.5	DDH	Tassawini West
SD010	215,176	832,227	29.3	134.5	DDH	Tassawini West
SD011	215,145	832,166	29.1	158.5	DDH	Tassawini West
SD012	215,126	832,210	27.5	134.5		Tassawini West
SD013	215,192	832 155	29.1	102.0		Tassawini West
SD032	215 153	832 143	30.3	155.5		Tassawini West
SD034	215,110	832.159	45.5	143.5	DDH	Tassawini West
SD035	215,202	832,228	29.8	103.5	DDH	Tassawini West
SD036	215,098	832,206	38.0	161.5	DDH	Tassawini West
SD037	215,063	832,179	57.2	181.9	DDH	Tassawini West
SD038	215,214	832,266	47.8	137.5	DDH	Tassawini West
SD039	215,071	832,159	60.8	129.5	DDH	Tassawini West
SD040	215,240	832,273	48.7	167.5	DDH	Tassawini West
SD041	215,042	832,177	60.8	159.5		Tassawini West
SD042 SD043	215,245	032,232 832 153	40.9 64 7	102.0		Tassawini West
SD044	215,000	832 278	51.1	158.5		Tassawini West
SD045	215,019	832,172	66.5	167.0	DDH	Tassawini West
SD046	215,270	832,255	48.0	146.5	DDH	Tassawini West
SD047	215,285	832,287	51.2	145.4	DDH	Tassawini West
SD048	215,024	832,148	65.0	148.0	DDH	Tassawini West
SD049	215,291	832,263	50.8	137.9	DDH	Tassawini West
SD050	214,994	832,164	68.9	165.0	DDH	Tassawini West
SD051	215,309	832,295	57.6	142.5	DDH	Tassawini West
SD052	215,003	832,143	68.3	189.5	DDH	Tassawini West
SD053	215,302	832,320	58.6	155.5		Tassawini West
SD054 SD055	213,327	832 153	02.0 66.5	161.5		Tassawini West
SD055	215,335	832 295	52.7	155.5		Tassawini West
SD057	215,177	832,147	30.4	114.5	DDH	Tassawini West
SD058	215,349	832,334	60.8	170.8	DDH	Tassawini West
SD059	215,221	832,192	32.3	105.0	DDH	Tassawini West
SD060	215,355	832,311	58.3	170.5	DDH	Tassawini West
SD061	215,200	832,158	31.9	123.5	DDH	Tassawini West
SD062	215,372	832,341	56.8	158.5	DDH	Tassawini West
SD064	215,381	832,318	53.3	185.5	DDH	Tassawini West
SD065	215,189	832,262	44.5	146.5		Tassawini West
SD007	215,104	832,200	28.1	149.5		Tassawini West
SD069	215,158	832,120	38.3	115.0	DDH	Tassawini West
SD071	215.211	832.292	55.3	200.5	DDH	Tassawini West
SD073	215,048	832,234	44.7	255.5	DDH	Tassawini West
SD078	215,294	832,343	52.4	99.0	DDH	Tassawini West
SD079	215,321	832,351	54.9	147.0	DDH	Tassawini West
SD080	215,396	832,347	52.7	109.5	DDH	Tassawini West
SD081	215,390	832,288	39.4	111.0	DDH	Tassawini West
SD082	214,984	832,185	57.9	135.8	DDH	Tassawini West
SD083	215,180	832,289	54.3	163.0	DDH	Tassawini West
SD085	215,234	032,290 832 288	54.9 51.5	120.0		Tassawini West
SD088	215,155	832 303	53.1	126.8		Tassawini West
SD089	215,279	832.311	54.5	149.5	DDH	Tassawini West
SD095	215,113	832,227	27.9	126.5	DDH	Tassawini West
SD096	215,107	832,257	24.6	123.0	DDH	Tassawini West
SD098	215,074	832,256	28.2	176.5	DDH	Tassawini West
SD100	215,066	832,227	34.1	168.0	DDH	Tassawini West
SD102	215,171	832,198	28.0	97.0	DDH	Tassawini West
SD103	215,180	832,215	28.9	86.5	DDH	Tassawini West
SD104	215,197	832,206	28.5	78.2	DDH	Tassawini West
50100 SD107	210,107	032,191 822 259	20.9 56 0	23.2 122.2	HUU HUU	Tassawini West
SD107	210,044 215 <i>∆</i> 13	002,000 832 208	30.0	75.0	חמם	Tassawini West
SD117	215,406	832.324	43.3	118.5	DDH	Tassawini West
SD118	215,134	832,268	40.9	169.4	DDH	Tassawini West

SRK Consulting
3CS024.001 – Takara Resources Inc.
Resource Estimation Technical Report, Tassawini-Sonne Au Project, Guyana

Hole ID	Easting	Northing	Elevation	Longth		Mineral Zone
SD110	215 126	822 202		197.0		
SD120	215,120	832 317	43.2	166.0		Tassawini West
SD123	215,225	832,337	55.6	88.7		Tassawini West
SD124	215,246	832,326	58.6	151.0	DDH	Tassawini West
SD125	215,200	832,315	56.8	181.0	DDH	Tassawini West
SD127	215,094	832,307	36.7	160.0	DDH	Tassawini West
SD128	215,084	832,331	36.6	145.0	DDH	Tassawini West
SD129	215,073	832,299	23.2	181.0	DDH	Tassawini West
SD131	215,100	832,280	29.3	248.0	DDH	Tassawini West
SD133	215,057	832,198	47.7	185.0	DDH	Tassawini West
SD135	215,077	832,201	47.8	160.0	DDH	Tassawini West
SD136	215,100	832,186	48.9	140.5	DDH	Tassawini West
SD138	215,087	832,179	52.4	144.0	DDH	Tassawini West
SD139	215,023	832,260	52.7	247.6	DDH	Tassawini West
SD141	215,068	832,226	34.9	143.5		Tassawini West
SD143	213,010	032,200	41.0	201.0		Tassawini West
SD144 SD145	214,992	832,270	59.7 69.5	207.5		Tassawini West
SD145	214,970	832,100	72.3	102.0		Tassawini West
SD140	214,905	832 264	39.8	212.5		Tassawini West
SD151	214 998	832 253	50.6	284.5	DDH	Tassawini West
SD175	215.097	832.096	42.5	167.5	DDH	Tassawini West
SD178	215.109	832.337	42.5	233.5	DDH	Tassawini West
SD188	215,118	832,314	45.2	232.5	DDH	Tassawini West
SD189	215,076	832,356	30.7	151.5	DDH	Tassawini West
SD191	215,143	832,321	50.2	233.5	DDH	Tassawini West
SD194	215,163	832,332	51.6	202.5	DDH	Tassawini West
SD197	215,193	832,330	50.7	154.5	DDH	Tassawini West
SD200	215,216	832,336	52.3	151.8	DDH	Tassawini West
SD202	215,239	832,346	53.1	108.0	DDH	Tassawini West
SD204	215,259	832,357	52.6	81.0	DDH	Tassawini West
SD205	215,288	832,359	44.9	81.0	DDH	Tassawini West
SD206	215,314	832,367	45.6	81.0		Tassawini West
SD206	215,330	032,370	46.0	99.0 194.5		Tassawini West
SD214	215,555	832,200	59.6	233.5		Tassawini West
SD240	215,369	832,285	50.4	181.5	DDH	Tassawini West
SD242	215,371	832,249	46.7	151.5	DDH	Tassawini West
SD243	215.014	832.209	61.7	207.5	DDH	Tassawini West
SD244	215,387	832,267	45.3	160.5	DDH	Tassawini West
SD245	215,092	832,152	52.7	124.5	DDH	Tassawini West
SD246	215,119	832,130	38.2	100.0	DDH	Tassawini West
SD247	215,279	832,231	47.3	78.0	DDH	Tassawini West
SD248	215,186	832,124	43.5	83.5	DDH	Tassawini West
SD249	215,205	832,131	45.0	75.0	DDH	Tassawini West
SD250	215,101	832,361	32.7	75.0	DDH	Tassawini West
SD251	215,236	832,203	33.3	79.0	DDH	Tassawini West
SD252	215,253	832,219	34.5	11.5	DDH	Tassawini West
SD230 SD217	215,405	832,230	46.Z	127.0		Tassawini West
SD310	215,225	832 203	40 3	200.5		Tassawini West
SD322	215,000	832 123	42.7	110.5		Tassawini West
SD324	215,077	832,113	43.6	122.8	DDH	Tassawini West
SD324A	215.078	832.115	42.0	17.5	DDH	Tassawini West
SD325	215,127	832,107	40.7	93.0	DDH	Tassawini West
SD338	215,316	832,271	55.5	93.0	DDH	Tassawini West
SD340	215,547	832,360	30.9	61.6	DDH	Tassawini West
SD342	215,548	832,392	34.6	87.0	DDH	Tassawini West
SD343	215,525	832,355	36.8	76.5	DDH	Tassawini West
SD345	215,516	832,382	46.5	94.0	DDH	Tassawini West
SD346	215,509	832,405	47.2	108.0	DDH	Tassawini West
SD347	215,298	832,238	49.0	87.0	DDH	Tassawini West
SD348	215,134	832,086	56.1	90.0	DDH	Tassawini West
SD349	215,533	832,415	45.9	111.0	DDH	Tassawini West
SD350	215,157	832,094	55.7	84.0	DDH	Tassawini West
50351A	215,183 215 492	832,100	54.3	43.5	DDH	Tassawini West
50352 F117	210,102	032,100 832 101	04.4 00 0	04.U 111		Tassawini West
F118	215,101	832 155	∠0.3 २२ 7	14.4		Tassawini West
F119	215 177	832 263	47.6	29.7	RC	Tassawini West
1 1 1 0	210,111	002,200	0.17	20.1	NO	

SRK Consulting
3CS024.001 – Takara Resources Inc.
Resource Estimation Technical Report, Tassawini-Sonne Au Project, Guyana

	Facting	Northing	Elevation	Longth		Minaral Zana
		Northing	Elevation	Length		
F120	215,349	832,297	53.8	32.7	RC	Tassawini west
F121	215,350	832,295	54.1	61.7	RC	Tassawini west
F122	215,191	832,305	57.6	51.0	RC	Tassawini West
F123	215,218	832,268	47.9	35.8	RC	Lassawini West
F124	215,218	832,269	47.9	26.6	RC	Tassawini West
F125	215,130	832,306	48.7	61.7	RC	Tassawini West
F126	215,170	832,086	56.9	61.7	RC	Tassawini West
F129	214,988	832,082	73.3	51.1	RC	Tassawini West
F130	215,072	832,173	60.6	57.1	RC	Tassawini West
F131	215,011	832,165	70.8	61.6	RC	Tassawini West
F132	215,010	832,189	64.8	61.7	RC	Tassawini West
F134	215,040	832,221	48.7	41.8	RC	Tassawini West
F135	215,088	832,207	43.7	25.1	RC	Tassawini West
F149	215,313	832,249	59.8	61.7	RC	Tassawini West
F150	215,320	832,284	49.8	41.8	RC	Tassawini West
F203	214,975	832,169	60.4	64.7	RC	Tassawini West
F209	214,987	832,191	55.9	61.7	RC	Tassawini West
F307	215.256	832.266	50.4	61.7	RC	Tassawini West
F308	215.274	832.249	47.4	32.7	RC	Tassawini West
F309	215,288	832,225	47.0	51.0	RC	Tassawini West
F310	215 258	832 298	54.0	50.0	RC	Tassawini West
F311	215,200	832 293	54 7	58.6	RC	Tassawini West
F312	215,200	832 281	55.3	51.0	RC	Tassawini West
F313	215,210	832,201	53.6	63.2	RC	Tassawini West
F313	215,105	922,200	53.0	61.7	RC PC	Tassawini West
F314 F215	215,527	032,324	02.J 52.9	59.6		Tassawini West
F315	210,007	032,270	53.8 56.5	00.0 01 7		Tassawini West
F310	215,375	032,334	50.5	01.7	RC DC	
F317	215,381	832,303	51.9	62.6	RC	Tassawini west
F318	215,400	832,272	42.9	61.7	RC	
F319	215,070	832,160	61.0	61.7	RC	
F320	215,063	832,183	57.0	61.7	RC	Tassawini West
F321	215,085	832,104	40.7	54.0	RC	Lassawini West
F322	215,063	832,104	44.3	32.7	RC	Tassawini West
F323	215,057	832,130	53.3	60.1	RC	Tassawini West
F324	215,035	832,172	63.7	61.7	RC	Tassawini West
F438	215,259	832,190	52.0	61.7	RC	Tassawini West
F439	215,275	832,199	50.0	60.1	RC	Tassawini West
F691	215,155	832,121	38.2	43.4	RC	Tassawini West
F692	215,111	832,162	45.3	54.0	RC	Tassawini West
F693	215,130	832,160	45.6	57.1	RC	Tassawini West
F694	215,096	832,145	52.2	67.7	RC	Tassawini West
F695	215,089	832,178	52.0	58.6	RC	Tassawini West
F696	215,108	832,184	48.7	38.8	RC	Tassawini West
F697	215,079	832,201	47.7	55.6	RC	Tassawini West
F819	215,219	832,112	36.5	60.1	RC	Tassawini West
F820	215.220	832.111	36.5	57.1	RC	Tassawini West
F821	215 233	832 131	34.5	46.4	RC	Tassawini West
F822	215 223	832 136	33.7	43.4	RC	Tassawini West
F823	215 223	832 135	33.7	51 O	RC	Tassawini West
F824	215 243	832 177	39.0	29.6	RC	Tassawini West
F825	210,240	832 175	20.9	23.0 12.1		Taccawini Moot
F826	210,240	002,170	39.0 31 F	40.4 12 0		Tassawini West
F020	210,200	002,107	34.3 24 F	12.9		Topopuini West
F021	210,230	032,100	34.5	47.9		
F020	210,221	032,139	33.9	29.0		
F854	215,255	832,220	34.7	14.4	KC DO	Tassawini west
F855	215,256	832,220	34.8	25.1	RC	i assawini west

APPENDIX C

Validation Slices across the Tassawini and Sonne Block Models

Tassawini East Validation Slices

Tassawini South Validation Slices

Tassawini West Validation Slices

Mine Creek Validation Slices

Black Ridge Validation Slices

Sonne Zone 100 Validation Slices

Sonne Zone 400 Validation Slices

APPENDIX D

Experimental Variograms for the Tassawini and Sonne Gold Deposits.

Tassawini East Omnidirectional Short-Lag Pair-wise Variograms.

Tassawini South Omnidirectional Short-Lag Pair-wise Variograms.

Tassawini South Directional Pair-wise Variograms

Tassawini West Omnidirectional Short-Lag Pair-wise Variograms.

Tassawini West Directional Pair-wise Variograms.

Mine Creek Omnidirectional Short-Lag Pair-wise Variograms.

Black Ridge Omnidirectional Short-Lag Pair-wise Variograms.

Black Ridge Directional Pair-wise Variograms.

Sonne Zone: 100 Omni-Directional Pair-wise Variogram.

Sonne Zone 200 Omni-Directional Pair-wise Variogram.

Sonne Zone 300 Omni-Directional Pair-wise Variogram.

Sonne Zone 400 Omni-Directional Pair-wise Variogram.

CERTIFICATE AND CONSENT

To accompany the report entitled: Mineral Resource Estimation, Tassawini-Sonne Gold Project, Guyana, dated March 1, 2010.

- I, Dr. Lucy Roberts, residing at Chadwick, Trellech, Monmouth, UK do hereby certify that:
- I am a Resource Geologist with the firm of SRK Consulting (UK) Ltd. with an office at 5th Floor, Churchill House, 17 Churchill Way, Cardiff, CF10 2HH, UK
- I am a graduate of Cardiff, University of Wales, UK with a B.Sc (Hons) in Exploration Geology in 2000, and an M.Sc. in Mineral Resources in 2001. I graduated from James Cook University, Townsville, Australia in 2006 with a Ph.D. in Applied Geostatistics. I have practiced my profession continuously since then. I have specialised in geostatistical techniques and resource modelling. Since 2006 I have estimated and audited mineral resources for a range of both bulk and precious metal commodities in Africa, South America, Europe, Russia and the former Soviet Union. I have been continually employed by SRK Consulting since completing my Ph.D. in 2006.I visited the subject property between November 12 and 16, 2007;
- I have read the definition of "qualified person" set out in National Instrument 43-101 and certify that by virtue of my education, affiliation to a professional association and past relevant work experience, I fulfill the requirements to be a "qualified person" for the purposes of National Instrument 43-101. I have read National Instrument 43-101 and this technical report has been prepared in compliance with National Instrument 43-101 and Form 43-101F1;
- I, as a qualified person, am independent of the issuer as defined in Section 1.4 of National Instrument 43-101;
- I am responsible for the preparation of Section 15 Mineral Resource Estimation under the supervision of G. David Keller, P.Geo and have reviewed other sections of this technical report;
- SRK Consulting (Canada) Inc. was retained by StrataGold Corporation to prepare a technical report for the Tassawini-Sonne Gold Project in accordance with National Instrument 43-101 and Form 43-101F1 guidelines. The preceding report is based on a site visit, our review of project files and discussions with StrataGold Corporation personnel;
- That I have not had any prior involvement with this property that is the subject of this report;
- That, as of the date of this certificate, to the best of my knowledge, information, and belief, this technical report contains all scientific and technical information that is required to be disclosed to make the technical report not misleading;
- I hereby consent to use of this report for submission to any Provincial regulatory authority;
- I consent to the filing of the technical report with any stock exchange and other regulatory authority and any publication by them for regulatory purposes, including electronic publication in the public company files on their websites accessible by the public, of the technical report.

This signature has been scan use for this navicular docum net. The author has being permission to its

Cardiff, United Kingdom March 1, 2010 Lucy Roberts, Ph.D. Resource Geologist

CERTIFICATE AND CONSENT

To accompany the report entitled: Mineral Resource Estimation, Tassawini-Sonne Gold Project, Guyana, dated March 1, 2010.

- I, Lars Weiershäuser, residing at 44 Juliana Court, Toronto, Ontario do hereby certify that:
- I am a Senior Geologist with the firm of SRK Consulting (Canada) Inc. with an office at Suite 1000, 25 Adelaide Street East Toronto, Ontario, Canada;
- I have graduated from the South Dakota School of Mines and Technology in Rapid City, South Dakota, USA with a M.Sc. in Geology in 2000. I obtained a Ph.D. in Geology from the University of Toronto in Toronto in 2005. I have practiced my profession continuously since 2000. I am an expert in geological modeling. Since 2007, I have modeled the geology and mineralization for a variety of early and advanced base and precious metals projects in Canada, Chile and Mexico. Between 2003 and 2004 I have worked for a number of companies in precious and base metal exploration in the capacity of field geologist. Between 2005 and 2006 I have worked for Falconbridge Ltd in Norway in base metal exploration;
- I am a Professional Geoscientist registered with the Association of Professional Geoscientists of the province of Ontario (APGO #1504);
- I visited the subject property between November 12 and 16, 2007;
- I have read the definition of "qualified person" set out in National Instrument 43-101 and certify that by virtue of my education, affiliation to a professional association and past relevant work experience, I fulfill the requirements to be a "qualified person" for the purposes of National Instrument 43-101. I have read National Instrument 43-101 and this technical report has been prepared in compliance with National Instrument 43-101 and Form 43-101F1;
- I, as a qualified person, am independent of the issuer as defined in Section 1.4 of National Instrument 43-101;
- I am responsible for the compilation of this technical report and take responsibility of all sections of this technical report except Section 15 that has been authored by Dr. Lucy Roberts under the supervision of G. David Keller, P.Geo;
- SRK Consulting (Canada) Inc. was retained by StrataGold Corporation to prepare a technical report for the Tassawini-Sonne Gold Project in accordance with National Instrument 43-101 and Form 43-101F1 guidelines. The preceding report is based on a site visit, our review of project files and discussions with StrataGold Corporation personnel;
- That I have not had any prior involvement with this property that is the subject of this report;
- That, as of the date of this certificate, to the best of my knowledge, information and belief, this technical report contains all scientific and technical information that is required to be disclosed to make the technical report not misleading;
- I hereby consent to use of this report for submission to any Provincial regulatory authority;
- I consent to the filing of the technical report with any stock exchange and other regulatory authority and any publication by them for regulatory purposes, including electronic publication in the public company files on their websites accessible by the public, of the technical report.

f. Alerestrense

Toronto, Canada March 1, 2010

Lars Weiershäuser, Ph.D., P.Geo Senior Geologist

CERTIFICATE AND CONSENT

To accompany the report entitled: Mineral Resource Estimation, Tassawini-Sonne Gold Project, Guyana, dated March 1, 2010.

- I, G. David Keller, residing in Toronto, Ontario do hereby certify that:
- I am a Principal Resource Geologist with the firm of SRK Consulting (Canada) Inc. with an office at Suite 1000, 25 Adelaide Street East Toronto, Ontario, Canada;
- 2) I am am a graduate of the University of Alberta in 1986, I obtained a B. Sc. Degree in Geology. I have practiced my profession continuously since 1986. I have been involved in mineral exploration from 1996 to 1990. Mining operations form 1990 to 1994. Since 1994, I have estimated and audited mineral resources for over 35 base and precious metals projects in Africa, North America, South America, Russia, Central Asia, Asia, Middle East and Eastern Europe;
- I am a Professional Geoscientist registered with the Association of Professional Geoscientists of the province of Ontario (APGO#1235);
- I have not visited the subject property;
- I have read the definition of "qualified person" set out in National Instrument 43-101 and certify that by virtue of my education, affiliation to a professional association and past relevant work experience, I fulfill the requirements to be a "qualified person" for the purposes of National Instrument 43-101. I have read National Instrument 43-101 and this technical report has been prepared in compliance with National Instrument 43-101 and Form 43-101F1;
- I, as a qualified person, am independent of the issuer as defined in Section 1.4 of National Instrument 43-101;
- I reviewed the resource estimation work completed by Dr. Lucy Roberts and take responsibility of the Mineral Resource Statement reported herein as documented in Section 15 of this technical report;
- SRK Consulting (Canada) Inc. was retained by StrataGold Corporation to prepare a technical report for the Tassawini-Sonne Gold Project in accordance with National Instrument 43-101 and Form 43-101F1 guidelines. The preceding report is based on a site visit, our review of project files and discussions with StrataGold Corporation personnel;
- That I have not had any prior involvement with this property that is the subject of this report;
- That, as of the date of this certificate, to the best of my knowledge, information and belief, this technical report contains all scientific and technical information that is required to be disclosed to make the technical report not misleading;
- I hereby consent to use of this report for submission to any Provincial regulatory authority;
- I consent to the filing of the technical report with any stock exchange and other regulatory authority and any publication by them for regulatory purposes, including electronic publication in the public company files on their websites accessible by the public, of the technical report.

Toronto, Canada March 1, 2010

m. m. 2

G. David Keller, P.Geo Principal Resource Geologist